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1. Introduction

We propose a new non-parametric approach to estimate the production function for housing. Our

estimation treats output as a latent variable and relies on the first-order condition for house builders.

For parcels of similar sizes, we compute housing by summing across the marginal products of

non-land inputs. In turn, differences in non-land inputs are caused by differences in land prices

that reflect differences in the demand for housing across locations. We implement our methodology

on recently-built single-family homes in France. We find that the production function for housing

is reasonably well approximated by a Cobb-Douglas function and close to constant returns. After

correcting for differences in user costs between different inputs, we obtain a share of land of about

20% in the production of housing.

A good understanding of the supply of housing is important for a number of reasons. First,

housing is an unusually important good. It arguably provides an essential service to households and

represents around 25% of their expenditure in both the us and France (Davis and Ortalo-Magné,

2011, Commissariat Général au Développement Durable, 2011). It is also an unusually important

asset. The value of the us residential stock owned by households was around 20 trillion dollar in

2007 (Gyourko, 2009). French households owned about 4.6 trillion dollar worth of housing in 2011

(Mauro, 2013). For both countries, this represents about 180% of their gross domestic product.

Housing and the construction industry also matter to the broader economy. The construction

industry, which in France employed about 8% of the workforce in 2011, is arguably an important

driver of the business cycle (e.g., Davis and Heathcote, 2005). The role of housing in the great

recession has been studied by, among others, Chatterjee and Eyigungor (2011) and Kiyotaki,

Michaelides, and Nikolov (2011). The broader effects of housing are not limited to the business

cycle. Housing has also been argued to affect a variety of aggregate variables such as unemployment

(Head and Lloyd-Ellis, 2012, Rupert and Wasmer, 2012) or economic growth (Davis, Fisher, and

Whited, 2011).

Finally, and most importantly, housing is also central to our understanding of cities. Different

locations within a city offer different levels of accessibility and bundles of amenities. Housing

production is central in transforming the demand for locations from households into patterns of

land use and housing consumption. Unsurprisingly, housing is at the heart of land use models in

the spirit of Alonso (1964), Muth (1969), and Mills (1967) that form the core of modern urban

economics. The exact shape of the housing production function has important implications for the

welfare properties of a range of planning regulations (Larson and Yezer, 2013). In particular, the
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welfare consequences of extent land use restrictions such as minimum lot size limits will depend on

how substitutable land is in the production of housing.

Following Muth’s (1969, 1975) pioneering work, there is a long tradition of work estimating a

production function for housing. The early literature is reviewed in McDonald (1981). A standard

approach is to regress some measure of property prices on the values of land and other inputs in a

cost-share estimation of a Cobb-Douglas production function.1 A closely related alternative is, like

Albouy and Ehrlich (2012), to estimate a cost function using land price data and a construction

costs index.

More generally, the estimation of the production function for housing is traditionally conducted

in the same way we estimate production functions or cost functions for other goods in productivity

studies (see Ackerberg, Benkard, Berry, and Pakes, 2007, Syverson, 2011, for recent reviews of the

literature estimating production functions).2 Results are generally supportive of constant returns

to scale in the production of housing and estimates for the elasticity of substitution between land

and other inputs typically range between 0.50 and 0.75.

Traditional approaches to the estimation of the production function for housing suffer from a

number of problems. First, housing is highly heterogeneous. Any given residential property is

essentially unique due to the uniqueness of locations. Properties also differ by their size, quality,

and a range of other characteristics such as their partition into room, their architectural style, or

their level of maintenance. As a result, when a property is transacted, we can observe the value of

the transaction P ×H but not the true quantity of housing being traded H nor the price per unit

P . This is a version of the unobserved price / unobserved quality problem that usually plagues the

1To estimate a more general constant-elasticity-of-substitution production function, past research has often re-
gressed the capital to land ratio of properties on the price of of their land. This directly estimates the elasticity
of substitution between capital and land in the production of housing. However, as it involves regressing ratios of
quantities on prices instead of prices on quantities, this type of estimation is, if anything, more problematic than the
estimation of the production function.

2Epple, Gordon, and Sieg (2010) is an exception. We discuss their approach in greater details below after sketching
our own approach.
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estimation of production functions. This problem is particularly acute with housing.3 Within a large

urban area, the price of a square meter of housing easily varies by a full order of magnitude.4 The

difficulty to separate prices from quantities also matters more with housing. In many production

function contexts, knowing how much revenue firms can generate from inputs is often something we

care deeply about whereas, for housing, actually knowing how many units of housing are supplied

is of utmost importance.

Then, we also acknowledge some parcels may be more suitable for housing production in a way

that is not observable to the analyst. To draw a parallel with the standard estimation of production

function, some parcels may be more productive than others. As a result, more housing will be built

on more productive parcels and, in turn, this will affect input choices. This is the classic endogeneity

problem that plagues the estimation of production functions. The added complication is that, with

housing, the suitability of a parcel for construction will also be capitalised in its price.

To summarise, the specificities of housing call for specific estimation techniques, impose strong

data constraints, and require careful attention to the sources of variation used for identification.

To meet our first challenge and be able to separate the quantity of housing H from its price P ,

we develop a novel approach. This approach relies on three main assumptions. First and despite

their extreme heterogeneity, we assume that houses can be compared in terms of how much housing

services H they offer. Put differently, there is a production function for housing H(K,T ), which

uses land T and capital (i.e., non-land inputs) K as primary factors.5 Since it cannot be directly

observed, the quantity of housing is best thought of as a latent variable. Second, house builders

maximise profit. They choose how much capital to use in order to build a house on a particular

parcel of land given the price P that households are willing to pay for each unit of housing on

3A natural approach for housing economists would be to purge the price of housing per unit of built area of
the effect of observable characteristics through an hedonic approach. This amounts to defining arbitrarily what a
unit of H is (e.g., a squarefoot of floorspace in a certain type of house) before getting P and in turn using it to
recover H. Beyond being extremely indirect and roundabout, such procedure is also poorly identified since we expect
observed and unobserved characteristics to be correlated with the true price per unit P . Two other solutions have
been considered by researchers in industrial organisation to tackle the issues of unobserved price/quality. The first is
to focus the estimation on truly homogenous goods (see for instance, Syverson, 2004, who restricts attention to firms
in the ready-made concrete sector). This would be extremely limiting with housing since one would need to restrict
attention to something like mobile homes. Second, and more indirectly, one may want to estimate the elasticity of
housing production with respect to input prices. A standard strategy is to instrument prices in a location by prices in
other locations (as for instance Nevo, 2001). While the appropriateness of this strategy is debatable for consumption
goods produced by oligopolistic firms, it is impossible it to implement in the housing market where land is immobile.

4According to the website Meilleurs Agents (http://www.meilleursagents.com/), the ratio between the price per
square meter at the higher bracket of the most expensive part of Paris and that at the lower brackets in the poorer
northeastern suburbs is about 10.

5The notion of a production for housing services can be traced back to Muth (1960) and Olsen (1969).
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this parcel. Third, we also assume free entry among builders. This is a fair assumption for the

construction of single-family homes as we argue below.

When solving our model, the first-order condition for profit maximisation by house builders

implies that the price of housing per unit times the marginal product of capital should be equal to

the user cost of capital: P HK = r. Under free entry, the difference between the price of a house and

the cost of the capital used to produce it should be equal to the cost of the parcel: P H−rK = R(T ).

We can use the free-entry condition to eliminate the price of housing from the first-order condition

for profit maximisation and obtain a partial differential equation where the marginal product of

capital depends on the quantity of housing produced and the cost and quantity of both factors:

HK = r/P = r H/(rK +R(T )). For any given amount of land T , this partial differential equation

can be solved up to a constant. The solution involves integrating over HK/H. This allows us to

estimate the amount of housing H built on a parcel using information about the cost of capital, its

amount, and the cost of land for the parcel at hand and for the other parcels of the same area T

built with less capital. In turn, knowing about housing H and capital K, we can assess how the

quantity of housing varies with capital for a given land area T .

Because our estimation is conditional on land area T , the production function for housing is

only partially identified. More specifically, it is only identified for a particular quantile of land area.

However, we can compare across quantiles of land area and verify that we obtain similar results.

We note that our methodology, although particularly appropriate for housing, is not specific to it.

It could be applied to estimating the production function of any good for which there is (enough)

variation in the price of a key input.

The second challenge is to find appropriate data. Our methodology requires information about

the price of parcels, their land area, and the amount of capital used for construction. The unique

data we use satisfy these requirements. They consist of several large annual cross-sections of land

parcels sold in France with a building permit for a single-family home.

Given our approach and the data at hand, the third challenge is to use an appropriate source of

variation. As already argued, the price of land may reflect not only the demand for housing locally

but also some supply factors. Although our estimation technique is non-standard, we still face

the same identification issue as standard regression estimation of the housing production function.

The supply of housing can only be identified from variation in the demand for housing, not from

unobserved differences in supply conditions. To minimise this problem, we develop an instrumental
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variable type of approach and use the fact that the demand for housing varies systematically both

across cities and within cities depending on the relative location of a parcel. Housing located closer

to the centre of Paris is more expensive than housing located further away in the suburbs. Such

difference is more plausibly caused by difference in demand rather than by differences in the ease

of construction.

We obtain three main results. First, we find that the share of land in housing is roughly

constant at 20%. As a first-order approximation, housing is produced under constant returns to

scale and is Cobb-Douglas in land and capital. This said, we can nonetheless formally reject that the

housing production function is Cobb-Douglas and constant returns. We can also reject more general

functional forms such as the translog or the ces. We find evidence of a slight complementarity

between land and capital and of small decreasing returns.

Finally, our work is most closely related to Epple et al. (2010) and Ahlfeldt and McMillen (2013)

who also treat housing as a latent variable.6 Like us, they provide a non-parametric estimation of

the housing production function using restrictions from theory. We nonetheless differ from their

approach in several key respects. Unlike us, they assume constant returns to scale. For each unit

of land, this assumption allows them to express the first-order condition for profit maximisation

with respect to capital in terms of the unit price of housing. The latter is not observed but they

show that it can be constructed as a monotonic function of the value of housing per unit of land.

Our approach shows that imposing constant returns to scale is unwarranted. They also rely on

different observables, namely housing values per unit of land P H/T and land rent per unit of land

R/T instead of land rent and capital for each quantile of land area. The use of land rent per unit

of land may be problematic since this price is highly correlated with parcel area in our data. We

also implement our approach on very different data: newly constructed houses for an entire country

instead of assessed land values for all houses for a single city, Pittsburgh, as Epple et al. (2010).

Finally, we take steps towards disentangling demand and supply factors in land prices, an issue

ignored by Epple et al. (2010).7

6Gandhi, Navarro, and Rivers (2013) also estimate production functions non-parametrically using a first-order
condition for profit maximisation but their approach focuses on the simultaneity between input choices and output
rather than disentangling prices and quantities. We treat the simultaneity of inputs differently through an instrumental
variable approach.

7These differences notwithstanding, our results are broadly consistent with theirs and supportive of unitary
elasticity of substitution between land and capital. They find a lower coefficient for land of 0.14 instead of 0.20.
We attribute this difference to the fact that they do not correct for different user costs between the two factors and
use data from Pittsburgh, declining city where land prices are perhaps expected to decline. The fact that land values
in their data is assessed may also play a role. When we implement their approach on our data XXX...
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2. Housing: treating output as a latent variable

House builders competitively produce housing services using land T and non-land inputs K, which

we refer to as capital for convenience. They face a production technology H(K,T ) assumed to be

strictly increasing and concave in both arguments. Land is exogenously partitioned into parcels of

area T where T is distributed over [T ,T ]. At a given location x, each unit of housing can fetch

a price P (x). This price is taken as given by builders. For a parcel of area T located at x, the

builder’s profit is

π(x) = P (x)H(K,T )− rK −R(P (x),T ) , (1)

where r is the user cost of capital (i.e., non-land) inputs and R(P (x),T ) is the (rental) price of a

parcel of land of area T at location x.

The first-order condition for profit maximisation with respect to capital inputs is

P (x)
∂H(K,T )

∂K
= r . (2)

The optimal amount of capital inputs that satisfies this condition is given implicitly by K∗ =

K∗(P (x),T ). As the housing production function is strictly increasing in capital, there is a bijection

between the price of housing and the profit-maximising level of capital, holding the area of the

parcel fixed: P (x) = P (K∗,T ). Hence, we can rewrite the price of land R(P (K∗,T ),T ) directly

as a function of the profit-maximising level of capital inputs K∗ instead of the price of housing:

R(P (K∗,T ),T ) ≡ R(K∗,T ).

Free entry implies that all the rents from building are dissipated into the price of land so that

R(K∗,T ) = P (K∗,T )H(K∗,T )− rK∗ . (3)

We note that the price of land is uniquely defined for any K∗ and T . While the price of land is

observed in the data, the price of housing is not. We can insert equation (2) into (3) to eliminate

the price of housing, P (x) = P (K∗,T ). We obtain the following partial differential equation:

∂H(K∗,T )

∂K∗
=

r

rK∗ +R(K∗,T )
H(K∗,T ) . (4)

For consistency with our empirical work below, this expression may be more intuitively rewritten

as an elasticity:

∂ logH(K∗,T )

∂ logK∗
=

rK∗

rK∗ +R(K∗,T )
, (5)
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where log denotes a natural logarithm. Because K∗ = K∗(P (x),T ), both sides of equation (4)

depend on parcel location x. It is also important to keep in mind for later that, although location

intervenes in both the first-order condition (2) and in the zero-profit condition (3), it only does so

through its effects on the price of housing, which, in turn, affects the price of land and the level of

capital inputs. In particular location does not affect the production of housing directly in H(K,T ).

Consider that for a given parcel of area T , the desirability of locations varies such that the price

of housing is distributed over the interval
[
P ,P

]
. The optimal level of capital investment in housing

K∗ then covers the interval
[
K,K

]
where K = K∗(P ,T ) and K = K∗(P ,T ). The solution to the

differential equation (5) for a given value of the optimal amount of capital inputs K∗ in this interval

is obtained by integration and can be written as:

logH(K∗,T ) =

∫ K∗

K

rK

rK +R(K,T )
d logK + logZ (T ) . (6)

where Z(T ) is a positive function. Equation (6) enables the computation of the number of units

of housing for a property on a parcel of area T , knowing the price of that parcel and the amount

of capital invested to build this property. In addition, the computation uses the profit-maximising

choices made for other parcels of the same area T for which less capital was invested. In turn, the

reason why these parcels received less capital is that they were located in less desirable locations

where the demand for housing is less.

To illustrate the workings of equation (6)and check the consistency of our approach, consider

first a Cobb-Douglas situation. In this case, the price of land R and the price of capital invested to

build the property rK are proportional. This implies that the term within the integral is constant.8

As a result, logH is proportional to logK and housing services are proportional to the investment

made to build the property elevated to some power. Put differently, we retrieve a Cobb-Douglas

form.

To take another example, assume now that the production function enjoys a constant elasticity

of substitution between land and capital equal to two. In this case, profit maximisation implies that

capital inputs should increase with the square of the price of parcel of area T . Integrating the share

of capital as in equation 6 implies that the production of housing is proportional to (
√
K+b)2 where

b is a constant. This functional form is indeed the generic functional form for a ces production

function when, with an elasticity of substitution equal to two, and a factor, land, is held constant.

8This property was already noted by Klein (1953) and Solow (1957).
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An important assumption of our model is that the price of land for a parcel is affected by

its location x only through the price that residents are willing to pay to live at location x on the

demand side. Our approach so far does not allow for a parcel characteristic y to affect the production

technology directly. To understand the implications of potential supply differences, let us consider

first a simple example where all parcels are of unit size, the demand for housing is the same at all

locations: P (x) = P = 1, and the price of capital inputs is normalised to unity: r = 1. Assume

that housing is produced following H(K,y) = 1
aK

a y1−a where the the unobserved characteristic y

measures the ease of construction. Then, in equilibrium capital is given by K(y) = y and parcel

values capitalise the ease of construction, R(y) = 1−a
a y = 1−a

a K. Using equation (6) to estimate

the value of housing, we would obtain that the production of housing is proportional to K instead

of being proportional to Ka.9

More generally, assume that parcels are now characterised by two location characteristics, x and

y. The characteristic x still affects the price that residents are willing to pay P (x) while y affects the

production of housing directly. The production of housing is now given by H(K,T,y). The analog

to the first-order condition (2) is now P (x)∂H(K(x),T,y)/∂K = r. The zero-profit condition also

implies that y affects the price of land directly: R(K∗,T,y) = P (x)H(K∗,T,y) − rK∗. The partial

differential equation analogous to (4) is now:

∂H(K∗,T,y)

∂K∗
=

r

rK∗ +R(K∗,T,y)
H(K∗,T,y) . (7)

It can be solved only for a given y. Integrating as we do in equation (6) ignoring y will be problematic

since y will be correlated with both the quantity of housing H and the price of land R. Locations

with a particularly good y will both be able to generate more housing given K and face a higher

price for land. Below, we develop an instrumental-variable approach to solve this problem.

Before going forward, some of our other assumptions must be discussed further. First, we assume

non-increasing returns to capital. This is arguably an appropriate assumption empirically for newly

constructed single-family homes. Second, because of the ease of entry in this industry and the

absence of fine product differentiation, our assumption of competitive builders also strikes us as

9Note that this problem of missing variable is worse than in standard cases because it creates a bias even when
the missing characteristic y is uncorrelated with P .
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reasonable.10 Third, at every location, the unit price of housing is taken as given by competitive

builders. We thus implicitly assume an integrated housing market. This is defensible in our empirical

application below where we can ignore outliers and where we consider the construction cost of

‘undecorated’ houses, that is before they become fully customized.11 Finally, parcels are exogenously

determined. Treating land as a fixed input is reasonable in France where zoning rules usually

prevent the subdivision of existing parcels in residential areas. Potential parcel selection issues are

also discussed below with our empirical strategy.

3. Estimation of the housing production function

3.1 Taking our framework to the data

For parcels of a given area T , equation (6) can be used to estimate housing production as a function

of capital inputs up to an integration constant. Our (partial) identification relies on the fact that

housing prices differ across locations. When holding land area T constant, spatial variations in

housing prices lead to spatial variations in land prices and in profit-maximizing capital inputs. We

can then use variations in land prices (which we observe) instead of variations in housing prices

(which we do not observe). By equation (6), estimating the production of housing at a given level

of capital inputs K∗ requires information about the price of the parcel R(K,T ) for all the values

K ∈ [K,K∗].

Our approach imposes two requirements on the data: K∗ must be continuous and there must be

a bijection between R and K∗ given T . In the data, the price of parcels of a given area T is observed

only for some values of capital, not for the entire continuum. For any pair (K,T ), we can use the

fact that we will have observations with slightly larger and slightly lower values of K for a given T

as well as observations with slightly lower and slightly larger values of T for a given K. That is, we

can estimate the price of land for every value of K and T using a kernel non-parametric regression.

The kernel we use is the product of two independent normals and the bandwidth is computed using

10A search on the French yellow pages (http://www.pagesjaunes.fr/) yields 1783 single-family house builders for
Paris (largest urban area with population above 12 million), 111 for Rennes (10th largest urban area with population
654,000), and still 38 for Troyes (50th largest urban area with population 188,000). (Search conducted on 21st May
2013 looking for ‘constructeurs de maisons individuelles’ – builders of single family homes – typing ‘Ile-de-France’ to
capture the urban area of Paris, ‘Rennes et son agglomération’, and ‘Troyes et son agglomération’ for the other two
cities.)

11Contracts between buyers and builders are usually for undecorated houses. After this step is completed, buyer
can choose more specific items such as options for their kitchen or bathrooms or their flooring to fully customise their
property. About 70% of our observations are for undecorated houses. For the other observations we condition out
their decorated status.

9
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a standard rule of thumb for the bivariate case (see Silverman, 1986).12 The estimated price of land

is given by the following formula:

R̂ (K,T ) =
∑
i

ωiR (Ki,Ti) with ωi =
LhK (K −Ki)LhT (T − Ti)∑
i LhK (K −Ki)LhT (T − Ti)

(8)

where N is the number of observations, Lh (x) = 1
hf
(
x
h

)
with f (·) the density of the normal

distribution, and hX = N−1/6σ (X) with σ (X) the empirical standard deviation for variable X

computed from the data. This kernel estimator has the property of making R(K,T ) unique, which

is requested by equation (3).

Note also that equation (6) involves the computation of an integral for which the lower bound is

the lowest value of the profit-maximising capital. In practice, we can potentially use any value of

capital as lower bound, K. Empirically, there is a trade-off. A small value for the lower bound will

allow us to study the variations of the housing production function over a wide range of values for

capital inputs but this may come at the price of being in a region where there are few observations.

In our work below, we work restrict attention to observations above the first decile (and below the

ninth decile) to estimate the production of housing.

Once the production of housing is at hand, we regress it on capital inputs. For instance, under

Cobb-Douglas, for any fixed T , there should be a linear relationship between the logarithm of the

housing production function and the logarithm of capital. In other words, we use a non-parametric

estimate of housing to infer how housing parametrically varies with capital as our ultimate goal is

to be able to characterise the production function for housing. This said, to make pronouncements

about the nature and shape of the production function of housing, we face the standard problem

that there is no undisputable ‘best’ specification when regressing the (estimated) quantity of housing

on capital investment. One might be tempted to reject a given specification because terms of higher

order are significant. For instance, we can reject the Cobb-Douglas specification because log capital

squared is significant. The pitfalls of doing this are well-known. No specification might be fully

robust to the inclusion of further terms (or there might be several). An alternative is to assess

the goodness of fit of our specifications using an information criterion that tradeoffs a measure of

goodness of fit against the number of explanatory variables. We view this type of approach as being

of limited value since the penalty imposed for the number of explanatory variable is arbitrary. We

also note that the R-squared of the parametric regressions reported below is always extremely high

12Alternatively, we could consider that the integrand rK
rK+R(K,T )

is computable only at the observed values of capital
and recover that integrand for other value of capital using a kernel non-parametric regression of the integrand.
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because we use data that are smoothed in the non-parametric estimation. Instead, we rely on the

magnitude of the prediction differences implied by different specifications. To put it simply, we

claim that the Cobb-Douglas form provides a good approximation. Even though we can formally

reject this functional for, because higher-order terms are significant, the differences in prediction

that these added terms make is minimal.

3.2 Identification and estimation strategy

As mentioned above, the main worry with our approach is the following. As made clear by the zero

profit condition (3), we rely on the fact that the price of land for a parcel only reflects the price

that housing can fetch on this parcel. It is easy to imagine situations where the price of a parcel

also reflects the cost of construction. A parcel may, in equilibrium, be worth less because its terrain

has a steep slope and building on it would be more costly.

To correct for this potential problem, we develop an instrumental variable approach. Conceptu-

ally, we want to estimate the following regression:

logRi = Xi a
R + Yi b

R + εRi , (9)

where X is a vector of location characteristics which affect the demand for housing and Y is a

vector of location characteristics that affect the supply of housing. The vector X is the empirical

counterpart of the location effect x in our framework above while Y is the empirical counterpart to

y. Then we can build a predicted land price R̂(K,T ) which depends only on demand characteristics

and not on supply characteristics: log R̂(K,T ) = X aR + Y bR where Y bR is the mean effect of

supply characteristics. Note that we do not want to use any information about the error term

which is also likely to contain unobserved supply characteristics. We can then use predicted parcel

prices instead of the actual parcel prices in the empirical counterpart of equation (6).

The location characteristics Y that affect the price of land through the supply of housing will

also affect capital inputs K. Hence we also want to estimate the following regression analogous to

equation (9) for capital inputs:

logKi = Xi a
K + Yi b

K + εKi . (10)

Like with land prices, we can then compute a predicted value for capital inputs K̂ which depends

only on demand characteristics: log K̂ = X aK + Y bK where Y bK is the mean effect of supply
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characteristics. We can then use predicted investments instead of actual investments in the empirical

counterpart of equation (6).

Finally, recall that our model takes land area T as given. It may be that the location charac-

teristics that affect supply also affect parcel area. For instance, steeper terrains that make building

more difficult may be divided into bigger parcels. Hence, land area might be correlated with Y

and this may also affect our results. In our example, larger parcel will look more capital intensive

because of their steeper terrain. This suggests applying the same approach as in equation (9) to

land area and estimate:

log Ti = Xi a
T + Yi b

T + εTi . (11)

The resulting predicted value of land T̂ = X aT + Y bT can then be used in our estimation of

equation (6) instead of the actual land area.

In practice, we can estimate regressions of the following type:

logRi = βc(i) + δc(i) di +Bi γ + εi , (12)

where βc(i) is an effect of the urban area c where parcel i is located, di is a measure of distance

of parcel i to the centre of its urban area, and Bi is a vector of other characteristics for parcel i

such as how this parcel was purchased, whether it is serviced, etc. Analogous regressions where

the dependent variable is K and T can also be estimated. Note that the estimation of housing

production H requires information about land prices, capital investment, and land area. For each

of these three quantities we can use either the actual value or the predicted value. To avoid too

many permutations, we report results for the actual values (R, K, T ) and for the predicted values

(R̂, K̂, T̂ ). We experimented with mixes of actual and predicted values such as (R̂, K̂, T ). They

implied results very similar to those reported here.

The key problem is that it is not obvious whether any explanatory variable we might use belongs

to the demand determinants X or the supply determinants Y (including any mix of the two). From

theory, we expect the city effect, βc, and the distance to the city centre, δc, to be strong determinants

of the demand for housing in line with monocentric urban models in the tradition of Alonso (1964),

Muth (1969), and Mills (1967). In the simplest version of these models, the price of housing, land

prices, capital inputs used in housing, and parcel area at each location are actually fully explained

by the distance to the centre and the price of housing at this centre (Duranton and Puga, 2015). At

one extreme, a minimalist approach would be to consider only city effects and distance to the center
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in X. One may choose to consider richer specifications for X including higher order distance terms

or other characteristics of parcels. While richer specifications lead to better predictors of R(K,T ),

which is important for an accurate estimation of housing quantities in equation (6), they may also

lead us to include explanatory variables that should be part of Y and conditioned out.

We do not take any strong stance regarding which approach is preferable for the specification

of equation (9) and experiment with both simple and rich specifications for the vector of demand

determinants X.

We note that our identification strategy relies on the same principle as standard instrumental

variables approaches in that we rely on the variation of the variables of interest that come from

surrogate variables (urban area of belonging and distance to its centre) instead of their full variation.

While the main principle is the same, our implementation differs considerably from standard two-

stage least-squares procedures. Our objective is to provide a non-parametric estimate of housing,

H, as a function of capital, K, and the associated land value, R, for a given land area, T , before

regressing logH on logK. Given that unobserved supply characteristics of parcels are expected to

affect capital investments, land values, and land areas, our ‘first stage’ (or, more appropriately, first

step) generates predicted values for three variables, capital K̂, land values R̂, and land area T̂ . We

can then estimate a predicted value of housing Ĥ. Finally, we can regress Ĥ on K̂ to characterise

(or parameterise) the production function of housing.

Although we may use only one instrument for three variables in the first step, the effect of capital

inputs on housing is nonetheless identified. This is because we associate a unique value of land prices

for each level of investment for a given land area. Hence, we should be thinking as our surrogate

variables instrumenting a triplet (K,R,T ) (or only part of that triplet) and not three different

explanatory variables.13 Then note also that our second step estimates an instrumented value of

housing before regressing it on instrumented capital in a third step. To be able to parameterise

the structural relationship between housing and capital for a given land area, we need to use

instrumented values for both the dependent and the explanatory variable.

In addition to our main identification issue, one may worry about various forms of supply

heterogeneity across cities. In particular, construction costs to vary across cities (Gyourko and

Saiz, 2006) and land prices capitalise (expected) city growth (Combes, Duranton, and Gobillon,

13In effect we use predicted values of K and R to estimate H given a predicted T . We then regress the estimated
value of H on predicted K, again for a predicted T .
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2013). The solution would be to estimate a separate housing production function for each urban

area separately. Except for the very largest French cities, the number of land transactions in a

typical urban area is unfortunately too small to do this. We can nonetheless divide urban areas in

size classes and perform a separate estimation for each size class.

Measurement error on capital inputs K or land prices R may also affect our estimation of

housing quantities. Measurement error is dealt with in two different ways in our approach. First, as

mentioned above, we kernel-smooth the land price data. Second, our iv approach will use predicted

land prices which are less prone to measurement error than observed land prices. Just like standard

instrumental variable approaches, our iv approach will allow our estimation to (i) focus on sources

of land prices variation that are driven solely by the demand for land and (ii) reduce measurement

error.

Finally, we need to keep in mind that housing construction is tightly regulated in France as in

many other countries. The two main regulatory instruments are (i) the zoning designation and

(ii) the maximum intensity of development.14 The zoning designation indicates whether a parcel

can be developed and, if yes, whether it can be done so for residential purpose. Given that we

only observe parcels with a development permit for a single-family home, this creates no further

issue beyond the fact that we estimate the production function for single-family homes in parcels

designated for that purpose. Turning to the maximum intensity of development that applies to a

parcel, it is not known in the data. Although we note that the quantity of housing is not solely

determined by the square-footage of a house, we nonetheless acknowledge that we estimate the

production function for housing under prevailing restrictions on residential development. Absent

regulations, single family homes may be extremely different from what they are under the current

regulatory regime.15 However, we are interested in estimating how land and capital inputs can be

transformed into housing under the current regulatory constraints. While knowing how regulations

affect the production of housing on parcels that can be developed is certainly a question of interest,

this is not one that we can answer here.

14The maximum intensity of development is essentially a standard floor-to-area (far) regulation. In France, it is
referred to as the ‘coefficient d’occupation des sols’ (cos). This regulation is subject to national guidelines but can
be adjusted locally by the municipality. Other regulations such as minimum parcel size or an obligation to follow a
local style with more or less stringency also often apply.

15To be concrete, consider that two technologies with very different production functions are available to build
housing. If one technology is banned through regulations, we can only learn about the second.
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3.3 Implementation

To implement our approach, we first consider a fine grid of 900 by 900 values of capital inputs and

land values which we obtain by kernel-smoothing our observations as described above. We then

consider each of the nine deciles of land area. For decile of land area, we set the lower bound

of integration K in equation (6) to its bottom decile and the highest value we consider K is the

top decile. This avoids having our estimations influenced by potential outliers or a different market

segment. Finally, the housing production function is estimated for 900 values of the capital which are

uniformly distributed in the interval defined by the first and last decile of capital. The computations

involve the estimation of the price of land at any point of the grid using equation (8) and the

evaluation of the second-right hand-side term in equation (6) using trapezoids to approximate the

integral in that term.

Before turning to our results, several implementation issues must be discussed. First, our model

relies on the rental value of land and the rental value of capital inputs. The data we use only report

the price of land and the cost of construction. Using stocks (transaction values) instead of flows

(rental values) makes no difference to our approach when the user cost of land is the same as the

user cost of capital. This is not the case when the user costs differ across factors.16 Following

Combes et al. (2013) we take the annual user cost of capital to be 6%. This reflects a long term

interest rate of 5% and a 1% annual depreciation.17 For the user cost of land, we take a value of

3% per year.18

Second, structure values and land prices are influenced by inflation over the period. To make

quantities comparable across time, we correct them for year effects. For that purpose, we regress the

logarithm of each quantity on year fixed effects for each year of data. Net quantities are obtained

by subtracting year fixed effects from their logarithm and taking the exponential.

Third, confidence intervals are estimated by bootstrap. At each iteration, a random sample

is drawn with replacement from the universe of all transacted land parcels. The price of land

is recomputed at each point of our grid of values for the area of land and capital using kernel

16This is very much in the spirit of the user-cost correction first proposed by Poterba (1984).
17According to Commissariat Général au Développement Durable (2012), the difference between investment in

housing and the increase in housing stocks in the French national account is 2009 was about 15 bn Euros, which
corresponds to slightly less than 1% of gdp.

18As estimated by Combes et al. (2013), the elasticity of land prices to local income is slightly above 1 while the
elasticity of the price of land with respect to population is slightly below one. A 1% annual increase in income and
a 1% annual increase in population (the mean urban population growth in France in the recent past) thus imply an
about 2% annual appreciation of land prices to be deducted from the long run interest rate of 5%.
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non-parametric regressions, and the housing production is reevaluated. The distribution of values

for housing production at each point of the grid is then recovered and confidence intervals can be

deduced.

4. Data

The observations in our data are transacted land parcels that are extracted from the French Survey

of Developable Land Price (Enquête prix des terrains à bâtir, EPTB). This survey is conducted every

year in France since 2006 by the French Ministry of Ecology, Sustainable Development, and Energy.

The sample frame is drawn from Sitadel, the official land registry, which covers the universe of all

building permits for detached houses. The survey selects single-family homes owned by households.

Permits for extensions to existing houses are excluded. Our study period is from 2006 to 2012.

Parcels are drawn randomly from all municipal strata (about 3,700 of them). Each stratum

corresponds to a group of municipalities (about 36,000 in France). Two thirds of the permits are

surveyed. Some French regions paid for a larger sample in some years. In total, this corresponds to

about 120,000 permits per year on average during our study period. The survey is mandatory and

the response rate after one follow-up is above 75%. Annually, the number of observations ranges

from 48,991 in 2009 to 127,479 in 2012.

While it is possible to get houses built in many ways in France, the arrangement we study covers

a large fraction of new constructions for single-family homes.19 Getting a new house by first buying

the land and then getting a house built on it appears fiscally advantageous as it avoids paying

stamp duties on the structure. This arrangement also greatly reduces financing constraints for

house builders and lowers their risks.20

For each transaction, we know the price of the parcel, its municipality, how it was acquired

(purchase, donation, inheritance, other), some information about its buyer, whether the parcel was

acquired through an intermediary (a broker, a builder, another type of intermediary, or none), and

some information about the house built, including its cost. The notion of building costs may be

ambiguous but we know whether the reported cost reflects the cost of a fully decorated house or

19The consultancy Développement-Construction reports between 120,000 and 160,000 new single family homes in
total during the period (http://www.developpement-construction.com/.

20We do not observe large groups of observationally similar houses built at the same location in the same year.
When such houses are purchased together with the land, they are outside the coverage of the survey we use. While
the development of large subdivisions with many standardized houses is frequent in many parts of the us and were
once important in France, it is less frequent today as French planning laws strongly favour in-filling at the expense of
large new developments at the urban fringe.
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the cost of a house prior to full completion (i.e., excluding interior paints, light fixtures, faucets,

kitchen cabinets, etc). Undecorated houses represent the large majority of our observations. We

also know the area of a parcel and whether it is ‘serviced’ (i.e., has access to water, sewerage, and

electricity). We only retained parcels that were purchased and ignore inheritances and donations.

Table 1: Descriptive Statistics

Variable Mean St. deviation 1st decile Median 9th decile

Entire country:
Parcel area 1,156 947 477 883 2,079
Construction cost 127,551 55,003 78,440 115,000 190,667
Parcel value (2012 Euros) 63,387 58,164 19,673 50,000 120,000
Parcel value per m2 (2012 Euros) 80 86 14 58 166
Urban areas:
Parcel area 1,048 821 449 820 1,883
Construction cost 131,616 57,599 80,140 118,000 199,750
Parcel value (2012 Euros) 73,115 62,518 27,017 58,271 135,000
Parcel value per m2 (2012 Euros) 96 94 22 72 192
Greater Paris:
Parcel area 839 673 329 665 1,493
Construction cost 151,298 73,727 89,173 132,850 236,605
Parcel value (2012 Euros) 142,010 108,598 69,155 124,419 220,000
Parcel value per m2 (2012 Euros) 237 193 67 182 466

Notes: The sample contains 386,181 observations. Quantities are deflated using the consumption price index.

Table 1 provides descriptive statistics for all our main variables. The first interesting fact that

emerges from table 1 is the considerable variation in parcel area, total construction costs, and parcel

value per square meter. A parcel at the top decile is about four times as large as a parcel at the

first decile. Interestingly, for construction costs, the corresponding inter-decile ratio is only about

2.4 whereas for unit land prices, it is nearly 12. The second interesting feature of the data that

table 1 highlights is that this variation does not only reflects a rural vs. urban gap. Even when

we consider only transactions from Greater Paris we still observe considerable variation in parcel

values per square meter.

Before presenting our main results, figure 1 proposes four plots of the ratio of the value of land

to the total cost of the house after deflating each factor by its user cost. Panel (a) represents this

plot for the entire country; panel (b) restricts its observations to urban areas, panel (c) restricts its

observations even further to urban areas with population between 50,000 and 100,000 whereas panel
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Figure 1: Land to structure cost ratios

Panel (a) Entire country Panel (b) All urban areas

Panel (c) Urban areas, 50,000-100,000 Panel (d) Urban areas, more than 500,000 (excl. Paris)

Notes: Observations between the 5th and 95th percentile of structure values in each panel.

(d) only considers the largest cities (bar Paris) with population above 500,000. A Cobb-Douglas

production function predicts that the cost ratios plotted in these four figures should be flat and

constant across figures. While for at least the first three panels, the cost ratio seems constant after

a construction cost of 100,000 Euro, it is decreasing in construction costs for values below this

threshold. We can also observe that the cost ratio of land is also higher in large urban areas where

it usually stands above 30% whereas it is about 20% in small urban areas. This said, it is unclear

how we should interpret these plots. Land parcels on which construction is particularly cheap will

fetch a higher price and the ease of construction will also affect the investment in capital. These

plots also arguably suffer from a serious measurement problem. We expect constructions costs to

be reported with error. This affects both the value reported on the horizontal axis and the cost

ratio reported on the vertical axis. As a result, it is difficult to make definitive conclusions about

the production function for housing from the plots reported here since we expect the measured

relationship between construction costs and the cost ratio to be downward biased.
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Figure 2: log housing production as a function of log capital investment

Panel (a) Entire country Panel (b) All urban areas

Panel (c) Urban areas, 50,000-100,000 Panel (d) Urban areas, more than 500,000 (excl. Paris)

5. Results

5.1 Main results using the raw data

Before looking at formal estimation results, it is useful to visualise our non-parametric estimations.

Each panel of figure 2 plots the estimated log production of housing, logH, as a function of capital

investment, logK for every decile of land area T . This is the empirical equivalent to equation

(6) in our framework. Panel (a) of figure 2 represent the production function for housing for the

entire country while panels (b), (c), and (d) do the same for all urban areas, small urban areas

with population between 50,000 and 100,000 and large urban areas with population above 500,000

(excluding Paris), respectively.

Although we must remain cautious when visualising these results, several remarkable features

emerge from figure 2. First, as might be expected, housing production always increases with capital.

More specifically, log housing as a function of log capital investment is apparently linear with a

slope of about 0.80. This is of course consistent with a Cobb-Douglas production function with an
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Table 2: Housing quantities and capital inputs, ols by area decile

Decile 1 2 3 4 5 6 7 8 9

Panel (a)
log (K) 0.779a 0.792a 0.796a 0.800a 0.808a 0.814a 0.819a 0.820a 0.818a

(0.00015) (0.00018) (0.00020) (0.00020) (0.00020) (0.00017) (0.00018) (0.00018) (0.00018)

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Observations 900 900 900 900 900 900 900 900 900

Panel (b)
log (K) 0.360a 0.267a 0.228a 0.257a 0.266a 0.399a 0.362a 0.361a 0.329a

(0.00566) (0.00691) (0.00857) (0.00981) (0.01014) (0.01126) (0.01083) (0.00984) (0.01004)

[log (K)]2 0.018a 0.022a 0.024a 0.023a 0.023a 0.018a 0.019a 0.019a 0.021a

(0.00024) (0.00029) (0.00036) (0.00041) (0.00043) (0.00048) (0.00046) (0.00042) (0.00042)

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Observations 900 900 900 900 900 900 900 900 900

Notes: ols regressions with a constant in all columns. XXXXRobust standard errors in parentheses. a, b,
c: significant at 1%, 5%, 10%.

exponent of about 0.80 for capital. Second, the relationship between logH and logK seem very

similar for all deciles of parcel land area. Although we can identify the production function of

housing only for each quantile of land area, the minimal differences that appear across deciles in

figure 2 are suggestive of a similar technological relationship between land and capital on small and

big parcels alike. The last important feature of figure 2 regards the differences across panels. While

the relationship logH and logK is very much the same across the first three panels, the last panel

is modestly different with more dispersion across deciles and a slightly lower slope.

We now explore our preliminary results more formally using regressions. Our first set of results

is reported in panel (a) of table 2 where, for each decile of land area, we regress the estimated

log production of housing on log capital investment in structure. Each regression relies on 900

observations obtained after smoothing the original data as per formula (8) and deleting the bottom

and top 10%. Each column of table 2 corresponds to a separate decile. Hence, the estimated share

of capital for the first decile is 0.78. It is 0.79 for the second decile, 0.80 for the third and fourth,

then 0.81 for the fifth and sixth, and finally 0.82 for the last three deciles. While these shares

are not exactly constant across deciles, the differences remain small. Interestingly, the share of

capital is estimated to be larger in larger parcels. This would be consistent with land and capital
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Table 3: Housing quantities and capital inputs, ols by class of city size

City size class Country Urban areas 0-50 50-100 100-200 200-500 500+ Paris

Panel a
log (K) 0.805a 0.784a 0.832a 0.822a 0.814a 0.785a 0.730a 0.700a

(0.00016) (0.00011) (0.00012) (0.00012) (0.00010) (0.00010) (0.00023) (0.00015)

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Observations 8,100 8,100 8,100 8,100 8,100 8,100 8,100 8,100

Panel b
log (K) 0.315a 0.365a -0.075a 0.038a 0.230a 0.068a -0.091a -0.002

(0.01577) (0.00978) (0.00752) (0.00920) (0.00837) (0.00647) (0.01929) (0.01213)

[log (K)]2 0.021a 0.018a 0.038a 0.033a 0.025a 0.030a 0.034a 0.029a

(0.00067) (0.00041) (0.00032) (0.00039) (0.00035) (0.00027) (0.00081) (0.00051)

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Observations 8,100 8,100 8,100 8,100 8,100 8,100 8,100 8,100

Notes: ols regressions with decile fixed effects in all columns. XXXXRobust standard errors in
parentheses. a, b, c: significant at 1%, 5%, 10%.

being (weakly) complement, that is with an elasticity of substitution between land and capital just

below one. Because these estimates are subject to a number of identification worries, we refrain

from further conclusions for now but note that in any case the differences in the production function

across quantiles are economically small. Importantly, we also note that our linear regressions provide

a near perfect fit as the R2 is always above 0.999.

[[Paragraph about corrected standard errors]]

Panel (b) of table 2 replicates the regressions of panel (a) adding the square of log housing capital

as an explanatory variable. We note that the quadratic term is significant in all regressions with

a coefficient of about 0.02. Hence, the production function for housing is not strictly linear but

convex. Because log capital typically varies between about 11.3 at the bottom decile and, 12.2 at

the top decile, this convexity implies that the share of capital is only about 0.02 larger for houses

built at the top decile of capital relative to houses built at the bottom decile. While the housing

production function is convex, this convexity is minimal and the differences in the share of capital

between the largest and smallest houses are tiny. We also note that this feature is consistent with

the cross-decile differences from the previous panel and the existence of small complementarities

between land and capital.
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Panel (a) of table 3 regresses again the log of estimated housing capital on log capital investment

but this time considers different samples corresponding to different geographies. In each regression,

all the land area deciles are lumped together but decile fixed effects are included. The first column

considers the entire population of transactions. The estimated coefficient on capital investment

is 0.80 which is about the mean of all deciles in panel (a) of table 2. Column 2 considers only

observation from urban areas and estimates a marginally lower coefficient of 0.78. The following

6 columns consider urban areas of increasing sizes. For the smallest urban areas with population

below 50,000 the estimated share of capital investment is 0.83. This coefficient is 0.73 for large

urban areas with population above 500,000 and 0.70 for Paris. Because land is more expensive

in larger cities, these results are again consistent with a weak complementarity between land and

capital in the production of housing.

Panel (b) of table 3 repeats the same exercise as panel (a) adding a quadratic term for the log

of capital investment. Just like panel (b) of table 2 it provides evidence of a modest convexity.

5.2 Instrumental variable results

We now turn to our results when we allow for R, K, and T to be simultaneously determined. We first

estimate equations (9), (10), and (11) using the urban area a parcel belongs to and, for each urban

area, the distance to its center as sources of exogenous variation (i.e., as instruments) to determine

R, K, and T . These regressions also include a number of controls for parcel characteristics. As

argued above, the urban area where a parcel is located and the distance to its center are plausibly

exogenous determinants of its area, price, and capital investment. To proxy for some potentially

important unobservables we also include the degree of completion, the intermediary through which

the parcel was purchased, and a dummy for access to services as controls. As noted in Combes

et al. (2013), urban area fixed effect and (log) distance to the centre explain 57% of the variation of

the price of land per square meter in the data for 2006. Although we do not develop a procedure to

test for weak instruments in our context, there is no doubt that the two variables we use strongly

predict our potentially endogenous variables.

The specification of table 4 mirror exactly those of table 2. For each instrumented decile of

land area, panel (a) reports results of a linear regression of instrumented logH on instrumented

logK. The results are very similar to the un-instrumented results of table 2. The fit of these linear
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Table 4: Housing quantities and capital inputs with endogenous R, K, and T , ols by area decile

Decile 1 2 3 4 5 6 7 8 9

Panel (a)
log (K) 0.787a 0.784a 0.784a 0.774a 0.784a 0.795a 0.806a 0.813a 0.814a

(0.00036) (0.00038) (0.00046) (0.00065) (0.00047) (0.00038) (0.00033) (0.00016) (0.00054)

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Observations 900 900 900 900 900 900 900 900 900

Panel (b)
log (K) 2.512a 3.242a 4.152a 5.694a 4.317a 3.069a 2.233a 1.215a 4.477a

(0.074) (0.055) (0.043) (0.043) (0.031) (0.063) (0.073) (0.038) (0.071)

[log (K)]2 -0.073a -0.104a -0.142a -0.208a -0.149a -0.096a -0.060a -0.017a -0.155a

(0.00315) (0.00234) (0.00184) (0.00185) (0.00131) (0.0027) (0.0031) (0.00164) (0.00303)

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Observations 900 900 900 900 900 900 900 900 900

Notes: ols regressions with a constant in all columns. XXXXRobust standard errors in parentheses. a, b,
c: significant at 1%, 5%, 10%.

specifications is high and the estimated share of capital is about 80% on average across deciles. The

share of capital also modestly increases across deciles of land area. If anything, this increases is

even more modest than in table 2 as it ranges from 0.787 to 0.814 instead of 0.779 to 0.818 in table

2. Even though the differences across the two tables for the same specification are significant in a

statistical sense, they are economically tiny.

Panel (b) of table 4 duplicates the specifications of panel (b) of table 2 and reports results

of regression of instrumented logH on instrumented logK that also include a quadratic term for

logK. The results indicate the presence of a mild concavity. This is a stronger contrast with table

2 where the results point towards modest convexity. While there is some variation in the estimated

coefficient on the quadratic term in logK across deciles of land area, the average is 0.11. With logK

varying from 11.3 to 12.15 between the bottom and top decile of capital, this concavity implies that

the average ‘coefficient’ on capital (log Y/ logK) is only about 0.1 less at the top decile relative to

the bottom decile.

While it is meaningful to rely on the closest center and the distance to it as exogenous predictors

of land area, land value, and capital investment, it is useful to experiment with various alternatives.

In table 5, we report results for four instrumentation strategies and two different specifications.
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Table 5: Housing quantities and capital inputs, regressions using alternate sources of variation for
land values

Category centre dist. dist.+ dist.+ centre dist. dist.+ dist.+
Category centre centre+misc. centre centre+misc.

log (K) 0.784a 0.697a 0.807a 0.807a 0.365a 2.468a 4.634a 0.525a

(0.00011)(0.00009)(0.00017) (0.00007) (0.00978)(0.01350)(0.01477) (0.01790)

[log (K)]2 0.018a -0.075a -0.161a 0.012a

(0.00041)(0.00057)(0.00062) (0.00075)

R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Observations 8,100 8,100 8,100 8,100 8,100 8,100 8,100 8,100

Notes: ols regressions with decile fixed effects in all columns. XXXXRobust standard errors in
parentheses. a, b, c: significant at 1%, 5%, 10%.

Instead of estimating a separate regression for each decile of land area, we estimate regressions

pooling all our observations and impose a fixed effect for each decile of land area. This simplifies

the comparison across specifications since each coefficient is estimated only once instead of nine

times for nine different deciles.

In column 1 of table 5, we regress the log of housing on the log of capital (and fixed effects

for each decile of land area) for all observations located in urban areas as in column 2 of table 3

using only urban area fixed effects as instrument. The estimated coefficient on log capital is very

close to those obtained previously at 0.78. In column 2, we only use log distance to the center

of the urban area of belonging as instrument. We obtain a lower value of 0.70 for the coefficient

on capital. We note that using only distance might be slightly awkward in a cross-city context as

being 10 kilometers away from the center of Paris probably commands a much stronger demand

for housing than being 10 kilometers away from the centre of a third-tier urban area. In column

3, we use both urban area fixed effects and distance to the center as instruments. This is akin

to the approach used in table 4 except that we estimate a single coefficient for capital instead of

one for each decile of land area. The estimated coefficient on capital is just below 0.81. This is in

the range of the coefficients estimated for each decile in panel (a) of table 4. Finally, in column

4, we also use the control variables mentioned above as excluded instruments. Adding these extra

characteristics, which include the degree of completion, the intermediary through which the parcel

was purchased, and a dummy for access to services makes no difference to the results relative to the

previous column.

Finally, the last four columns of table 5 replicate the first four but add the square of the log of
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capital as explanatory variable. The results are more fragile. Depending on the exact specification,

the log production function is either modestly convex or modestly concave in log capital.

6. Recovering a functional form

So far, we have non-parametrically estimated the production of housing as a function of capital

investment given the area of parcels. We then used some regressions to assess the shape of this

production function. We reached two main conclusions. As a first approximation, the production

function of housing is Cobb-Douglas with a share of capital of about 0.80. However, a more detailed

look suggests some log convexity when using the raw data and some log concavity with intrumented

values.

In this section, we develop an approach to test a variety of specific functional forms for the

production function of housing. Given the precision of our estimates, we can always formally reject

any simple functional specification (or less simple specifications, given enough observations). We

do not use standard specification tests because they essentially impose arbitrary penalties for more

general specifications. Instead, we want to assess how good an approximation a particular functional

specification is relative to another. For instance, how much better do we fare by assuming a constant-

elasticity-of-substitution (ces) production function relative to a (less general) Cobb-Douglas?

As shown above, measuring the fit of different specifications is unlikely to be very informative.

Our estimation of the production of housing relies on kernel-smoothed data for land values and

capital inputs. As a result, the R-squared is always very close to unity. We proceed instead as follow.

For our exposition to remain concrete, let us consider a ces production function. The production

of housing is given by H = A
(
αK(σ−1)/σ + (1− α)T (σ−1)/σ)σ/(σ−1) where σ is the elasticity of

substitution between land and capital inputs. Using equation (5) and the partial derivative of the

ces production function with respect to K, we obtain the following cost share:

rK∗

rK∗ +R(K∗,T )
=

α(K∗)1−1/σ

α(K∗)1−1/σ + (1− α)T 1−1/σ . (13)

Using our data, we then estimate α and σ using equation (13) by minimising the sum of the

squared distances between actual costs shares and those predicted by a ces production function. We

then insert those parameters into the production function and use them to produce counterfactual

produced quantities of housing using the actual data about K, R, and T . That is, we estimate the

parameters of a ces production function that best fit observed factor shares and then apply this
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production function to generate counterfactual quantities of housing. We then perform the same

regression of logH on logK, with and without a quadratic term in logK as in table 2. We can

then repeat the same exercise using instrumented values for K, R, and T as in table 4. Aside from

the ces, we perform the exercise for the Cobb-Douglas production function and for second- and

third-order translog production functions.

Table 6 reports the results for estimations using the observed values of K, R, and T , while table

7 reports the results for estimations using instrumented values of K, R, and T .

In panel (a) of table 6, we can see that generated Cobb-Douglas housing data lead to about the

same coefficients as in table 2 but, obviously, fail to replicate the upward trend in this coefficient

as higher deciles of land area are considered. The estimated coefficient of 0.783 is the same as

the one estimated from factor shares and used to generate the data about housing quantities.

Panel (b), which also includes a quadratic term for logK estimates the same expected coefficient

of 0.783 for logK and a coefficient of 0 for its square, as should also be expected. For the ces

case, we note that the estimated parameter values for the production function are α = 0.783 and

σ = 1.003. This is extremely close to the Cobb-Douglas case. In panel (c), the coefficients on

logK are, unsurprisingly, very close to those estimated in the Cobb-Douglas except that this panel

also replicates the tendency of the capital share to increase as higher deciles of land areas are

considered. In panel (d), we nonetheless find that we estimate minimal concavity instead of the

convexity reported in panel (b) of table 2. Finding minimum concavity for the generated data is

of course consistent with an estimated σ just above one. In panel (e), the second-order translog is

also able to replicate the upward trend in the coefficient on logK. Like the ces, these coefficients

are nonetheless marginally below those reported in table 2. In panel (f), the second-order translog

offers so far the best replication of the results of panel (b) of table 2. The coefficient on logK is on

average very close to that estimated directly from the data and the coefficient on the square of logK

is also about equal to the average value in panel (b) of table 2. Panels (g) and (h) duplicate the

last two panels for a third-order translog function instead of a second-order translog. The results

match those obtained directly from the data in table 2 very well.

Table 7 repeats the same exercise for instrumented values of K, R, and T instead of the observed

values used in table 6. The results should now be compared with those in the two panels of table 4.

Again, the Cobb-Douglas data deliver shares of the right magnitude but are unable to generate the

26



Table 6: Housing quantities and capital inputs fitting specific functional forms, ols by area decile

Decile 1 2 3 4 5 6 7 8 9

Panel (a): Cobb-Douglas
log (K) 0.783a 0.783a 0.783a 0.783a 0.783a 0.783a 0.783a 0.783a 0.783a

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Panel (b): Cobb-Douglas
log (K) 0.783a 0.783a 0.783a 0.783a 0.783a 0.783a 0.783a 0.783a 0.783a

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

[log (K)]2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Panel (c): ces
log (K) 0.770a 0.775a 0.778a 0.781a 0.784a 0.786a 0.787a 0.789a 0.790a

(0.00005) (0.00005) (0.00006) (0.00006) (0.00006) (0.00006) (0.00006) (0.00006) (0.00006)

Panel (d): ces
log (K) 0.936a 0.943a 0.947a 0.951a 0.954a 0.956a 0.958a 0.960a 0.962a

(0.00004) (0.00004) (0.00004) (0.00004) (0.00004) (0.00004) (0.00004) (0.00004) (0.00004)

[log (K)]2 -0.007a -0.007a -0.007a -0.007a -0.007a -0.007a -0.007a -0.007a -0.007a

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Panel (e): Second-order translog
log (K) 0.768a 0.773a 0.777a 0.780a 0.782a 0.784a 0.786a 0.788a 0.789a

(0.00014) (0.00014) (0.00014) (0.00014) (0.00014) (0.00014) (0.00014) (0.00014) (0.00014)

Panel (f): Second-order translog
log (K) 0.332a 0.337a 0.341a 0.343a 0.346a 0.348a 0.350a 0.351a 0.353a

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

[log (K)]2 0.018a 0.018a 0.018a 0.018a 0.018a 0.018a 0.018a 0.018a 0.018a

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Panel (g): Third-order translog
log (K) 0.776a 0.777a 0.779a 0.781a 0.784a 0.787a 0.790a 0.793a 0.795a

(0.00022) (0.00020) (0.00018) (0.00017) (0.00016) (0.00016) (0.00015) (0.00014) (0.00014)

Panel (h): Third-order translog
log (K) 0.139a 0.206a 0.257a 0.299a 0.334a 0.365a 0.392a 0.416a 0.439a

(0.00734) (0.00734) (0.00734) (0.00734) (0.00734) (0.00734) (0.00734) (0.00734) (0.00734)

[log (K)]2 0.027a 0.024a 0.022a 0.020a 0.019a 0.018a 0.017a 0.016a 0.015a

(0.00031) (0.00031) (0.00031) (0.00031) (0.00031) (0.00031) (0.00031) (0.00031) (0.00031)

Notes: ols regressions with a constant in all columns. 900 observations for each regression. The R2 is
always 1.00 in all specifications. XXXXRobust standard errors in parentheses. a, b, c: significant at 1%,
5%, 10%.
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Table 7: Housing quantities and capital inputs fitting specific functional forms and using instru-
mented values, ols by area decile

Decile 1 2 3 4 5 6 7 8 9

Panel (a): Cobb-Douglas
log (K) 0.790a 0.790a 0.790a 0.790a 0.790a 0.790a 0.790a 0.790a 0.790a

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Panel (b): Cobb-Douglas
log (K) 0.790a 0.790a 0.790a 0.790a 0.790a 0.790a 0.790a 0.790a 0.790a

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

[log (K)]2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Panel (c): ces
log (K) 0.773a 0.780a 0.786a 0.791a 0.794a 0.797a 0.800a 0.802a 0.804a

(0.00008) (0.00008) (0.00008) (0.00008) (0.00008) (0.00008) (0.00008) (0.00008) (0.00008)

Panel (d): ces
log (K) 1.031a 1.038a 1.043a 1.047a 1.051a 1.053a 1.056a 1.058a 1.059a

(0.00005) (0.00005) (0.00005) (0.00005) (0.00005) (0.00005) (0.00005) (0.00005) (0.00005)

[log (K)]2 -0.011a -0.011a -0.011a -0.011a -0.011a -0.011a -0.011a -0.011a -0.011a

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Panel (e): Second-order translog
log (K) 0.723a 0.748a 0.766a 0.780a 0.792a 0.802a 0.811a 0.819a 0.826a

(0.00073) (0.00073) (0.00073) (0.00073) (0.00073) (0.00073) (0.00073) (0.00073) (0.00073)

Panel (f): Second-order translog
log (K) 2.948a 2.973a 2.991a 3.005a 3.017a 3.027a 3.036a 3.044a 3.051a

(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

[log (K)]2 -0.094a -0.094a -0.094a -0.094a -0.094a -0.094a -0.094a -0.094a -0.094a

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Panel (g): Third-order translog
log (K) 0.784a 0.759a 0.758a 0.768a 0.784a 0.803a 0.824a 0.846a 0.868a

(0.00149) (0.00121) (0.00099) (0.00083) (0.00069) (0.00057) (0.00046) (0.00037) (0.00030)

Panel (h): Third-order translog
log (K) 5.335a 4.434a 3.781a 3.271a 2.855a 2.505a 2.202a 1.937a 1.701a

(0.01200) (0.01200) (0.01200) (0.01200) (0.01200) (0.01200) (0.01200) (0.01200) (0.01200)

[log (K)]2 -0.192a -0.155a -0.127a -0.105a -0.087a -0.072a -0.058a -0.046a -0.035a

(0.00051) (0.00051) (0.00051) (0.00051) (0.00051) (0.00051) (0.00051) (0.00051) (0.00051)

Notes: ols regressions with a constant in all columns. 900 observations for each regression. The R2 is
always 1.00 in all specifications. XXXXRobust standard errors in parentheses. a, b, c: significant at 1%,
5%, 10%.
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log concavity estimated in panel (b) of table 4. The ces data are now able to reproduce both the

tendency of the capital coefficient to be higher in higher deciles of land area with a linear specification

and the estimated log concavity of H in K when adding a quadratic term. We nonetheless note that

the amount of concavity obtained from the ces specification is minimal. Again the two translog

specifications yield excellent results and are able to match both those from the linear specification

of panel (a) of table 4 and those with the addition of a quadratic term in panel (b) of the same

table.

[[Paragraph of conclusion to be written: translog is better but Cobb-Douglas is not bad and CES

implies an elasticity of substitution extremely close to one]]

7. Full identification?

Sketch:

• In our approach so far, we have assumed that land area is taken as given. Our iv approach

allows for the land area to be systematically correlated with unobserved supply characteristics

of parcels. For instance, more ‘productive’ parcels may be systematically smaller (or larger).

• Our approach is also only partially identified in the sense that we can only estimate the

production function of housing as a function of capital inputs.

• We can easily extend our approach to allow for profit-maximising developers to optimise profits

with respect to parcel area T as well. This introduces a second first-order condition.

• Importantly, for the two first-order conditions to be consistent with zero profit, we need to

impose constant returns to scale like Epple et al. (2010) and R becomes proportional to T :

R(K,T ) = T ×R2(T ) which is clearly counterfactual.

• In turn, imposing constant returns to scale would lead us to be able to fully identify the

production function of housing.

• To assess whether constant returns to scale is a good assumption, we can proceed as in the

previous section 6 and estimate housing quantities under this restriction. We can then regress

these alternative generated values of logH on logK and on logK and its square as previously.
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• As shown by table 8, the results are not good at all and far from what we estimate with the

true data in tables 2 and 4.

• We interpret this as a rejection of constant returns to scale in production even if, again, that

may be not be a bad first-order approximation.

Table 8: Housing quantities and capital inputs imposing constant returns to scale in production,
ols by area decile

Decile 1 2 3 4 5 6 7 8 9

Panel (a): raw data
log (K) 0.768a 0.755a 0.743a 0.733a 0.726a 0.721a 0.717a 0.715a 0.712a

(0.00013) (0.00035) (0.00052) (0.00068) (0.00085) (0.00100) (0.00115) (0.00129) (0.00139)

Panel (b): raw data
log (K) 0.379a -0.216a -0.704a -1.199a -1.736a -2.241a -2.711a -3.121a -3.446a

(0.00465) (0.01448) (0.02162) (0.02554) (0.02753) (0.02796) (0.02863) (0.02994) (0.03261)

[log (K)]2 0.016a 0.041a 0.061a 0.081a 0.104a 0.125a 0.144a 0.162a 0.175a

(0.00020) (0.00061) (0.00091) (0.00108) (0.00116) (0.00118) (0.00121) (0.00126) (0.00137)

Panel (c): instrumented data
log (K) 0.787a 0.811a 0.833a 0.868a 0.897a 0.907a 0.911a 0.913a 0.928a

(0.00036) (0.00087) (0.00139) (0.00180) (0.00227) (0.00239) (0.00238) (0.00224) (0.00205)

Panel (d): instrumented data
log (K) 2.512a -4.364a -8.040a -10.052a -11.656a -9.737a -5.891a -3.045a -4.566a

((0.07447)) (0.14872) (0.21290) (0.29771) (0.42405) (0.51673) (0.58163) (0.57299) (0.50648)

[log (K)]2 -0.073a 0.219a 0.375a 0.462a 0.531a 0.450a 0.288a 0.167a 0.232a

(0.00315) (0.00629) (0.00900) (0.01259) (0.01793) (0.02184) (0.02459) (0.02422) (0.02141)

Notes: ols regressions with a constant in all columns. 900 observations for each regression. The R2 is
always 1.00 in all specifications. XXXXRobust standard errors in parentheses. a, b, c: significant at 1%,
5%, 10%.

8. Conclusions

[[To be written]]
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