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Abstract

We consider the role of a nonlinear commuting cost function in determina-

tion of the equilibrium commuting pattern where all agents are mobile. Previ-

ous literature has considered only linear commuting cost, where in equilibrium,

all workers are indifferent about their workplace location. We show that this

no longer holds for nonlinear commuting cost. The equilibrium commuting

pattern is completely determined by the concavity or convexity of commuting

cost as a function of distance. We show that a monocentric equilibrium ex-

ists when the ratio of the firm agglomeration externality to commuting cost is

sufficiently high. Finally, we find empirical evidence of both long and short

commutes in equilibrium, implying that the commuting cost function is likely

concave.
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1 Introduction

How does the local labor market interact with commuting cost to produce the equi-

librium commuting pattern? In a model with identical commuters, can cross-

commuting, where one commuter’s path to their job strictly contains another com-

muter’s path, occur in equilibrium? In fact, Fujita and Thisse (2013, p. 201) state

that “in any spatial equilibrium configuration, cross-commuting does not occur.” We

show in this paper that when commuting cost is strictly concave in distance, cross-

commuting is an equilibrium phenomenon.

For an empirical viewpoint, consider the 242 municipalities in Tokyo Metropolitan

Area consisting of Saitama, Chiba, Tokyo, and Kanagawa prefectures. If we regress

the municipal yearly wage paid by firms in the manufacturing sector in 2012 on a

quadratic function of distance of worker residence from Tokyo Station, we have:

wage = −00294 ∗ distance2 + 149 ∗ distance+ 429
(−226) (129) (188)

(t-statistics in parentheses)

That is, the wage is decreasing and concave in the distance. This is in accord with the

findings of Timothy and Wheaton (2001), where the wage is increasing and concave

in commuting time in Boston and Minneapolis St. Paul in 1990. We will attempt to

explain these phenomena using a simple theoretical model.

In general, the urban labor market interacts with commuting in interesting ways.

For instance, the wage arbitrage condition says that no one can gain by changing her

workplace location, given her residence location. In the literature, this statement is

further specialized to mean that each worker is indifferent to her workplace. It is

known that in order to satisfy this condition, one has to assume a linear commuting

cost, as in the previous literature such as Ogawa and Fujita (1980), Fujita and Ogawa

(1982), and Lucas and Rossi-Hansberg (2002).1 If commuting cost is nonlinear, the

wage arbitrage condition does not hold, and hence, given her residence location, each

worker strictly prefers the one particular location of their workplace that maximizes

1Although Lucas and Rossi-Hansberg use a time cost of commuting that is exponential in com-

muting distance, by taking logarithms of their equations, for example (3.3) and (3.4), we obtain a

linear wage no-arbitrage equality.
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her utility relative to other workplaces. In this case, there is no guarantee that

each worker can find a workplace so that the urban spatial labor market clears.

Nevertheless, we show in this paper that when the commuting cost is either strictly

convex or strictly concave in distance, the urban spatial labor market clears. Our

paper extends the literature in that we allow the commuting cost to be nonlinear in

distance and derive the equilibrium commuting pattern explicitly.

To be precise, our theoretical conclusions are as follows. If the commuting cost

function is increasing and convex in distance, then the equilibrium commuting pattern

is exclusively parallel, where every worker commutes the same distance2 and there is

no cross commuting. If the commuting cost function is increasing and concave in

distance, then the equilibrium commuting pattern is exclusively cross commuting.

Our next task in this work is to investigate whether cross commuting occurs in the

real world. More precisely, using commuter flow data from Tokyo, we will empirically

test whether the actual commuting pattern is cross commuting or parallel commuting.

We find that cross commuting is prevalent.

Our main purpose here is to investigate commuting patterns as a function of com-

muting cost, accounting for interactions with the labor market. Hence we simplify

other aspects of our urban model. We leave to future work non-monocentric equi-

librium urban patterns as well as the investigation of equilibrium under commuting

cost functions that are neither convex nor concave. Analyses of these issues involve

solving complex systems of equations, and likely require computer simulations rather

than an analytical solution for tractability reasons.

The remainder of the paper is organized as follows. Section 2 gives our model,

Section 3 presents our theoretical results, whereas Section 4 presents the empirics.

An Appendix contains the longer proofs of results.

2For simplicity of this statement, we implicitly assume that the numbers of firms and consumers

are the same and their quantity of land use is the same. Our model is more general than this.
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2 The model

2.1 Preliminaries

We build on Ogawa and Fujita (1980) by extending the model to nonlinear commuting

cost.3 In particular, we consider a city on a line. The equilibrium configuration is

endogenous, but we give conditions sufficient for it to be monocentric.4 The locations

of firms and workers are denoted by  and , respectively. The exogenous mass of

workers is  , whereas the exogenous mass of firms is  . There is one unit of land

available at every location, so this is an example of a linear city. Let composite

consumption good be denoted by  and let  denote quantity of land,  for workers

and  for firms. The wage paid by a firm at location  is denoted (). The rent

paid per unit by a consumer at location  is denoted by (), whereas the rent paid

per unit by a firm at location  is denoted by ().

The commuting cost for a consumer living at  but working at  is  (|− |) =
 ·(|− |), where  is the commuting cost parameter, (0) = 0 and (·) is twice con-
tinuously differentiable with 0  0. It represents the generalized cost of commuting

between  and , consisting of both the pecuniary and time costs of commuting. On

the one hand, the pecuniary cost of commuting involves train fares and gasoline prices

and is normally increasing and concave in distance due to the presence of fixed costs,

for example the cost of a car or the cost of getting to a train station. It might also be

concave due to a switch in transportation modes under commuter optimization. On

the other hand, the time cost of commuting involves the opportunity cost of time and

fatigue from a long commute.5 Thus, from the perspective of non-pecuniary costs,

the commuting cost function is increasing and convex, especially when commuting

time is prohibitively long. Therefore, the functional form of the generalized cost of

commuting is unknown and subject to empirics.

3Although Ogawa and Fujita (1980) allow endogenous lot sizes for firms in a technical sense, since

output of each firm is assumed to be constant and there is a fixed coefficient production technology

in land and labor, in fact the land and labor demand of firms are fixed.
4If firms and workers are spatially integrated, then the only possible spatial equilibrium is where

each worker commutes distance 0. In that case, the equilibrium and model are not very interesting

for the purpose of analyzing commuting patterns.
5An exception is Fujita-sensei, who does most of his research on trains.
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To keep the model tractable and our focus on commuting cost, as is common in

this literature, we shall assume that factors are inelastic in supply and demand. This

will be made precise below.

2.2 Consumers

Each worker supplies 1 unit of labor inelastically, and will demand  units of land

inelastically. To obtain this from primitives, we assume that the utility function has

the following form:

( ) =

(
 if  ≥ 

−∞ otherwise

The budget constraint faced by a consumer who lives at  but works at  is:

() =  + ()+  (|− |)

Therefore, if the price of land is positive, the quantity of land consumed by a worker

at  is , whereas the consumption of composite good as well as the utility level of

a worker living at  but working at  is ( ):

( ) = ()− () −  (|− |)

A worker residing at  and working at  has indirect utility

 ( ) = ( ) = ()− () −  (|− |) (1)

2.3 Producers

Turning to the production side, let  be firm output and let  be labor input. Recall

that  is firm land use. The function () is the firm externality, which is increasing

in access to all other firms in the business district. It is specified as

() =  − 

Z ∞

−∞
 (0 − )(0)0 (2)

where  ≥ 0 is continuous and increasing, (0) is the endogenous density of firms
at location 0,  is an exogenous parameter representing the strength of the firm

agglomeration externality, and  will be the maximum amount that can be produced.

5



Firms will demand 

units of labor inelastically and  units of land inelastically.

To derive this from primitives, the production function of a firm located at  is given

by:

( ; ) =

(
() if  ≥ 


and  ≥ 

0 otherwise

The profit of a firm locating at  is therefore given by

() = ()− () − () (3)

Therefore, if wages and rents are positive, firms will demand labor  = 

and land

 =  . Then the indirect profit of a firm locating at  is given by

Π() = ()− 


()− () = Π (4)

where Π ≥ 0 represents the equilibrium profit of every firm, since firms are free to

choose their locations.

In what follows, we determine the endogenous variables: wages, land use, land

rent, and the commuting pattern.

2.4 Commuting pattern functions and spatial equilibrium

If  and  in the commuting cost function are additively separable (conditional on the

sign of the difference), for example  (− ) =  · |− | as in the previous literature,
then the wage arbitrage condition is met, namely  ( ) is constant in  for each .

Hence, it is not difficult to show existence of a spatial equilibrium. However, once the

transport cost function is slightly different from linear, which is very likely in the real

world, then we can no longer rely on the wage arbitrage condition. In this paper, we

explore spatial equilibrium when the transport cost is nonlinear in distance. In our

framework, indirect utility  ( ) is given in equation (1). For reference, we shall

call the equilibrium indirect utility level  . Let  = () be the commuting pattern

function indicating that all workers living at  commute to firms locating at .6

At equilibrium, we do not require that indirect utility  is constant for all  and

, but rather:

 =




£
(())−Π− (())

¤− () −  (|− ()|) ∀ ∈ R
6Implicit in this definition is the idea that all consumers at one location commute to the same

work location. In fact, this will hold in equilibrium.
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and

 ≥ ()− () −  (|− |) ∀  ∈ R

The densities of firms and consumers with respect to location will be given by

() and (), respectively. The transfer to absentee landlords, who are endowed

with all of the land but obtain utility only from consumption commodity is denoted

by  ≥ 0.

Definition 1 An allocation is a list of five measurable functions and a scalar:

{()() () () ();}, where the first three functions all have domain
R and range R+, the fourth and fifth functions have domain R and range R, whereas

 ≥ 0.

Definition 2 An allocation {()() () () ();} is called feasible if:
(i)

R∞
−∞() =

R∞
−∞ () = 

(ii) () + () ≤ 1 a.s.  ∈ R
(iii)

R∞
−∞()() =

R∞
−∞ [() +  (|− ()|)]()+

(iv) 


R

() =

R
{∈R|()∈} () for all Lebesgue measurable  ⊆ R

(v) () =  − 
R∞
−∞  (|0 − |)(0)0 a.s.  ∈ R

The first condition represents population balance, the second condition represents

material balance in land, the third condition represents material balance in consump-

tion good, the fourth condition represents material balance in labor, whereas the last

condition says that the externality is correct given the distribution of firms.

Definition 3 A spatial equilibrium is a feasible allocation

{()() () () ();} and a price system {() ()}, where  and 

are both measurable functions from R to R+, satisfying the following conditions:

(vi) For almost every  ∈ R where ()  0, () solves:

() = max


()− () −  (|− |) + 1



Z ∞

−∞
Π(0)(0)0

(vii) ()  0 if and only if () = sup0∈R (
0) ≥ 0

(viii) ()  0 if and only if Π() = ()−()

− () = sup0∈RΠ(

0) ≥ 0
(ix)

R∞
−∞ () =  ≥ 0
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The first condition represents consumer optimization over workplaces, the second

represents consumer optimization over residential location, the third condition rep-

resents producer optimization over locations, whereas the last condition represents

absentee landlord rent collection. For tractability and determinacy reasons, we as-

sume that the consumers own the firms.

Definition 4 We say that a spatial equilibrium {()() () () () }, {() ()}
is symmetric if all of its component functions (excluding ) are symmetric around 0.

We say that a symmetric spatial equilibrium {()() () () ()}, {() ()}
is monocentric if there exists  ∈ R+ such that ()  0 only if || ≤ , and

()  0 only if ||  .

Assuming a symmetric monocentric configuration with () = 1 , we compute

the derivatives of  for future use:

0() = − 


[ (+ )−  (− )] Q 0 for  R 0

00() = − 


[0 (+ ) + 0 (− )]  0

Definition 5 We say that a symmetric monocentric spatial equilibrium

{()() () () () }, {() ()} features parallel commuting if
for almost all  0 ∈ R+ with () (0)  0 and 0  , then (0)  (). We say

that a symmetric monocentric spatial equilibrium {()() () () () },
{() ()} features cross commuting if for almost all  0 ∈ R+ with () (0) 
0 and 0  , ()  (0).

3 Analysis of equilibrium

We distinguish two cases: commuting cost is convex and commuting cost is concave.

First, we perform preliminary calculations that are common to our analysis of both

cases to reduce repetition.

3.1 Preliminaries

For the purposes of this subsection, the equilibrium is assumed to be symmetric and

monocentric.
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Define  =
R∞
−∞ (). From the material balance condition for consumption

good, let

() =  =
1



∙
2



Z 

0

() − 2



Z 



 (− ())−

¸
(5)

Eventually, we must and shall specify  and  in terms only of parameters. Next,

we provide informal intuition for the correlation between the second derivative of the

commuting cost function and the commuting pattern.

Each worker residing at  chooses the best location (≤ ) of a firm. The

consumer optimization problem is specified as:

 = max


()− () −  (− ) +
1



Z ∞

−∞
Π(0)(0)0 (6)

with the first order condition:

0() = − 0(− ) = − 0(−1()− ) (7)

Since the RHS is negative, the wage gradient 0() is always negative. That is, the

wage monotonically decreases from the city center  = 0. The higher wage near the

city center offsets a longer commute.

Proposition 6 Suppose that the equilibrium is symmetric and monocentric. If the

transport cost function is increasing and convex, then parallel commuting is an equi-

librium commuting pattern. If the transport cost function is increasing and concave,

then cross commuting is an equilibrium commuting pattern.

Proof. Since

00()−  00(−1()− ) = − 00(−1()− )(−10()− 1)−  00(−1()− )

= − 00(−1()− )−10()

the second-order condition is

− 00(−1()− )−10()  0 (8)

If (8) is met for all ,  = () is the global maximizer for every worker at residence

.
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If the transport cost function is strictly convex in distance, then the second-order

condition (8) is satisfied when −10()  0. On the other hand, if the transport cost

is strictly concave, then (8) is satisfied when −10()  0.

Intuition for Proposition 6 is as follows. Please refer to Figure 1. The horizontal

axis is the location of the worker’s job, , whereas the vertical axis is in dollars.

Define

(;) = ()− () −  (− ) +
1



Z ∞

−∞
Π(0)(0)0

so that
(;)


= 0() +  0(− )

We have graphed
(;)


in Figure 1. This curve must be downward sloping according

to the second order condition. The first order condition (7) tells us that where this

curve crosses the horizontal axis at ∗ is the solution to the worker’s optimization

problem for given residence . In the case where  is convex, when we increase , for

each given ,  0 rises. Hence the (;)


curve shifts up, represented by the red curve,

and the new optimal job location ∗+ must be to the right of 
∗. In other words,

if we look at workers more distant from the firms, they will pay higher commuting

cost. The marginal commuting cost is increasing in distance, so they will choose a job

location closer to the residences even though wages are lower. In the case where  is

concave, when we increase , for each given ,  0 falls. Hence the (;)


curve shifts

down, represented by the green curve, and the new optimal job location ∗− must be

to the left of ∗. In other words, if we look at workers more distant from the firms,

they will pay higher commuting cost. The marginal commuting cost is decreasing in

distance, so they will choose a job location farther from the residences where wages

are higher.

Due to the inelastic demand for land, the commuting pattern function will be

linear in both cases described above.

Set  =

2
,  =


2
+ 

2
, () = 1


for  ≤ , () = 0 for   , () = 0

for  ≤ , () = 1

for    ≤ , () = 0 for   . () is defined by equation

(2) for this density .
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3.2 Convex commuting cost

A monocentric equilibrium exists if the ratio 


of the firm agglomeration externality

to the commuting cost is sufficiently large:

Proposition 7 If  00  0, for sufficiently large 


, there exists a symmetric monocen-

tric equilibrium with only parallel commuting. Moreover, this is the only symmetric

monocentric equilibrium allocation.

The proof is in the Appendix. We can see from the proof that the sign of

 −  coincides with the signs of the second derivatives of  () and () in

the case of  00  0. Since the business district is much smaller than the residential

district in reality,    holds, and hence the wage and the residential land

rent are decreasing and concave in the distance from the city center. Otherwise,

when    , they are decreasing and convex. In either case, business land

rent is not necessarily decreasing in distance from the city center.

In order to understand these conditions further, we specify functional forms as

follows: () = − R − ( − 1)
2
1 and  (|− |) =  (− )

2
. Then, specializing

the calculations in the Appendix to this example, the first sufficient condition for

monocentric spatial equilibrium (27) can be written as

∆() ≡ ( − )
2
− ( − )

2
−  (− ) (− 2+ ) 

( − )
2

+
2 (2 − 2) 


≥ 0

Since ∆00()  0, ∆() is convex. Because ∆() = 0, this condition is ∆0() ≥
0, namely

 ≤  ( − )2

(2 − 2 + 22) (9)

The second sufficient condition for equilibrium can be written as

∆() ≡ − £ ¡2 + 2
¢− 2 ( + 2)−2 + 3

¤
+22 ( − )  ≥ 0

Because ∆00()  0, ∆() is convex. Since the minimizer of ∆() is negative, this

condition is ∆(0) ≥ 0, namely

 ≤  ( − )2

(2 −  + 2)
(10)
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The right hand side of equation (9) is larger than that of (10). In fact, we have shown

that the condition sufficient for a monocentric spatial equilibrium is given by (10). It

exists when the commuting cost  is small and the face-to-face communication cost 

is large. Substituting  =

2
and  =

+
2

into the right hand side of equation

(10), it can shown that the right hand side of this equation is increasing in  and

decreasing in  . Thus, a monocentric spatial equilibrium exists if the number of

firms is large and the number of workers is small. Whereas the former acts as an

agglomeration force for firms, the latter acts as a dispersion force for workers via the

convexity of the commuting cost function.

3.3 Concave commuting cost

Proposition 8 If  00  0, for sufficiently large 


, there exists a symmetric mono-

centric equilibrium with only cross commuting. Moreover, this is the only symmetric

monocentric equilibrium allocation.

The proof is in the Appendix. From (7) and (8), the equilibrium wage as a

function of firm location is decreasing and concave in distance from the city center.

This coincides with the empirical results in Tokyo Metropolitan Area, Boston, and

Minneapolis St. Paul provided in the introduction. The residential land rent is

decreasing and convex in the distance from the city center. But business land rent

is not necessarily decreasing in distance from the city center.

3.4 Land rent

Proposition 9 Equilibrium residential land rent decreases as distance to the business

district becomes larger. Under the assumption that the total land used for offices is

smaller than that used for housing:    , equilibrium residential land rent

is convex under concave transport cost, whereas it is concave under convex transport

cost.

Proof. From (1), the equilibrium land rent for workers is

() =
1



£
(())−  (− ())− 

¤
 ∀ ∈ 
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Its derivative is

0() =
1


[0(()) 0()−  0(− ()) (1−  0())]

= − 1


 0(− ())  0

where the second equality follows from (7). The second derivative is

00() = − 1


 00(− ()) (1−  0())

Because 1 − | 0()| = 1 −   0, the sign of 00() is the same that of

− 00(− ()).

The negative gradient of residential land rent is a well-known equilibrium outcome

in a monocentric city with a spaceless business district. In contrast, firms in our

model use space. According to the empirical literature such as McMillen (1996),

the actual residential land rent is decreasing and convex in the distance from the

city center. Therefore, we conjecture that generalized transport cost of commuting

is concave in distance and the commuting pattern is cross commuting. This is to be

tested statistically in section 4.

We know that 0()  0 since the access to all firms decreases from the city center

and that 0()  0 from (7). Hence, computing 0() from (4), we see that the slope

of land rent in the business district can be positive or negative. That is, whereas the

residential land rent monotonically decreases in the distance from the city center, the

business land rent can be non-monotonic.

4 Empirics

In order to test whether parallel commuting or cross commuting is dominant, we

employ data on commuter flows from the 2010 Population Census in Japan. We

extract an origin-destination matrix for 12 municipalities located along the Chuo

Line commuter railroad out of 62 total municipalities in the Tokyo prefecture. In

Figure 2, the 3 light brown municipalities are in the central city whereas the 9 light

green municipalities are suburbs of the central city, for a total of 12 municipalities.

Since we are interested in identifying commuter flows from the suburbs to the

central city, distinguish between the 9 suburbs () and 3 central city municipalities
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(). We have constructed a × = 9×3 matrix of commuter flows, whose elements
are denoted by . The 9 suburban municipalities and the 3 central city municipalities

are sorted according to the distance from Tokyo station. Roughly speaking, parallel

(respectively, cross) commuting is dominant if the elements near the diagonal, for

example 11, 21, 83 and 93, are larger (respectively, smaller) than those far from the

diagonal, for example 13, 23, 81 and 91. In order to examine this, we conduct a

test of Kendall’s   statistic; see Kendall and Gibbons (1990). The test statistic is:

  =
 ( −)

( − 1) 2

and the average standard error is

 =
2

( − 1) 2

"
X
=1

X
=1

 ( −)
2 − 1


( −)

2

# 1
2

where

 = min{}  =

X
=1

X
=1



 =

X
=1

X
=1

  =

X
=1

X
=1



 =

X


X


 +

X


X


  =

X


X


 +

X


X




It is known that   is standard normally distributed (Götaş and İ̧sçi, 2011;

Kendall and Gibbons, 1990).

Using the commuter flow data, we find that   = −00136 and  = 000259.

Since   = −526,   is negative and significantly different from zero, implying

that cross commuting is dominant in the Chuo Line.7 That is, there are many short-

distance commutes between nearby municipalities and many long-distance commutes

between distant municipalities as compared to intermediate-distance commutes. This

test also suggests that commuting cost is increasing and concave in distance.

7Using data from 1995, we have obtained almost the same result:   = −00149,  = 000228,
and   = −654.
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5 Conclusion

We have examined equilibrium of a rather standard model, similar to the previous

literature with the exception that we allow general convex or concave commuting cost

as a function of distance. We have shown that a monocentric equilibrium exists if

the ratio of the firm agglomeration externality to the commuting cost is sufficiently

large.8 Moreover, when commuting cost is convex, we have the following properties

of equilibrium: residential land rent and business district wages are decreasing and

concave in distance to the CBD, and there is exclusively parallel commuting. When

commuting cost is concave, we have the following: residential land rent is decreas-

ing and convex in distance to the CBD, business district wages are decreasing and

concave in distance to the CBD, and there is exclusively cross commuting.9 The

empirical evidence is broadly consistent with a concave commuting cost function and

cross commuting, in contrast with the statement of Fujita and Thisse cited in the

introduction.10

8In the case where the business district and residential area are fixed by zoning, we do not need

to worry about firms moving into the residential area nor about workers moving into the business

district, and our model becomes much simpler. Specifically, in the case of  00  0, a sufficient

condition for existence of equilibrium is  · () ≥  · , whereas for the case of  00  0, a

sufficient condition for existence of equilibrium is  · () ≥  ·  (). Of course, this requires

strong enforcement of zoning and perfect knowledge on the part of the zoning board concerning the

number of firms and consumers as well as their land use. It could well be that the equilibrium with

mobility of agents is not monocentric.
9If the city configuration is not monocentric, we can infer from our work the following commuting

patterns:

(i) The commuting pattern is a replica of the monocentric one in the case of a duocentric or

tricentric configuration.

(ii) There is no commuting in the case of a fully integrated configuration.

(iii) The commuting pattern is a combination of (i) and (ii) in the case of an incompletely integrated

configuration.
10If we were to fix the locations of all agents in a monocentric configuration, it would be possible

to recast our commuting pattern function in the context of a continuous two-sided matching or

assignment problem; see Sattinger (1993). In that case, parallel commuting corresponds roughly to

positive assortative matching (in location) whereas cross commuting corresponds roughly to negative

assortative matching. But our problem and model are actually a good deal more complicated than

this. The matching problem neglects both the inter-firm externality as well as the land market and

rents. In essence, in the context of a matching model, our model involves the endogenous choice of
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It is important to relate our work to the wasteful commuting found in Hamilton

and Röell (1982). Contingent on a version of the classic monocentric city model

with a linear commuting cost, they point out that actual average commuting distance

exceeds optimal average commuting distance by a factor of 8. In fact, in our model,

equilibrium average commuting distance is the same independent of whether the

commuting pattern is parallel commuting or cross commuting. Of course, average

commuting cost will differ by commuting pattern and with our function  ; moreover,

the equilibrium commuting pattern depends on the commuting cost. But our model

has nothing to say about equilibrium average commuting distance.

Further work should focus on analyzing the model with even more general com-

muting cost functions, especially those that are neither globally convex nor globally

concave. As a preview, consider a more realistic commuting cost function that is

concave for shorter distances but convex for longer distances, with exactly one inflec-

tion point at an intermediate distance. Our conjecture is that there will be cross

commuting for shorter distances but parallel commuting for longer distances, with a

discontinuity in the commuting pattern function at the inflection point. Rents and

wages will be continuous but not necessarily differentiable everywhere.

Appendix

Proof of Proposition 7

We focus on locations in R+; the prices and allocations for the other locations are

defined symmetrically. The technique of proof that equilibrium exists is guess and

verify. Set  =

2
,  =


2
+ 

2
, () = 1


for  ≤ , () = 0 for   ,

() = 0 for  ≤ , () = 1

for    ≤ , () = 0 for   . () is defined

by equation (2) for this density . For    ≤ , define

() =



(− ) (11)

The function  is arbitrary otherwise. Hence, for 0 ≤  ≤ ,

−1() =



 +  (12)

agent characteristic (location) as well as an externality between certain agents’ choices.
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For   , define () = 0.

There are two cases to consider:

(i)  6=  . We shall find an explicit expression for equilibrium rent on the

portion of the city where consumers live. This involves integrating (7), plugging

back into equation (6) to eliminate (), and solving for () using the fact that rent

must be 0 at the boundary of the city. The details are as follows:

Integrating (7), we obtain

() = −
Z

 0(−1()− )

= − 

 −


µ
 −


 + 

¶
+ 

= − 

 − 2
¡
−1()− 

¢
+  (13)

where  is the constant of integration.

From (6) and (13),

() =
1


[()−  (− )− ]

=
1



∙
− 

 − 2
¡
−1()− 

¢
+  −  (− )− 

¸
=
1



∙
−  − 

 − 2 (− ()) +  − 

¸
Setting  =

1


( − ) ,

= − 

2 ( − 2) (− ()) +  (14)

Since () = 0, (14) leads to

 =


2 ( − 2) ( − )

Plugging  into (14) yields our ultimate expression for rent (17) below.
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(ii)  = . We have

() = −
Z

 0(−1()− )

= −
Z

 0
µ



 + − 

¶


= −
Z

 0 () 

= − 0 ()  +  (15)

where  is again a constant of integration. From (6) and (15),

() =
1


[()−  (− )− ]

=
1


[− 0 ()  +  −  (− )− ]

=
1



∙
− 0 ()


(− ) +  −  ( − )− 

¸
=

1


[− 0 ()+ ]

where  =  0 () +  −  ( − )− . Since () = 0, we obtain

() =
1


 0 () ( − ) (16)

Having analyzed both cases, we can summarize as follows:

For    ≤ , define

() =

(


2(−2) [ ( − )−  (− ())] if  6=


2(−)
0 () ( − ) if  =

(17)

Let  = 2

Z 



()

For 0 ≤  ≤ , define

() =  + (−1()) +  (−1()− ) (18)

Using the profit function (4) and the fact that the rent for consumers and producers

must be equal at ,

For 0 ≤  ≤ , define

() =
1



½
()− () +




[ ()− ()]

¾
+ 1 (19)

18



where

1 ≡
(


2(−2) [ ( − )−  ()] if  6=

2
 0 () if  =

(20)

is a function of only exogenous parameters.

(i) If we substitute (13) into (19), we have

() =
1



½
()− () +





∙
 () +



 − 2
¡
−1()− 

¢− 

¸¾
+ 1

=
1



∙
() +







 − 2
¡
−1()− 

¢¸
+ 2

Using the fact that () = () evaluated at  =  = ,

2 ≡ − 

2 ( − 2) ()−


2
 ()

(ii) If we substitute (15) into (19), we get

() =
1



½
()− () +




[ () +  0 ()  − ]

¾
+ 1

=


2

∙
() +




 0 () 

¸
+ 2

Using the fact that () = () evaluated at  =  = ,

2 ≡ −
2

 ()

Hence,

() =

(

2

£
()− () + 




−2 [ (
−1()− )−  ()]

¤
if  6=


2

£
()− () + 


 0 () 

¤
if  =

(21)

Let

 = 2

Z 

0

()

Then  =  +, a function of only exogenous parameters. So  can be found as

only a function of exogenous parameters by plugging  into (5). In addition, ()

(0 ≤  ≤ ) is a function of only exogenous variables by using (18).

Notice that (4) and (19) imply that profits are constant on 0 ≤  ≤ , namely

Π() = Π =  ()− 


 ()− 1 (22)

19



Hence,

For 0 ≤  ≤ , define

() =




£
()−Π− ()

¤
To show that this represents an equilibrium, we must verify that Π ≥ 0,  ≥ 0, that
no consumer wishes to move to [0 ], and that no firm wants to move to (∞).
In the case of  00  0 and  6= ,

11 the total land rent is

 =  + = 2

Z 

0

() + 2

Z 



()

=




Z 

0

()− () +






 − 2
£

¡
−1()− 

¢−  ()
¤


+


 − 2
Z 



[ ( − )−  (− ())] 

=




Z 

0

()− ()  +


 − 2
Z 



[ (− ())−  ()]


 − 


+


 − 2
Z 



[ ( − )−  (− ())] 

=




Z 

0

()− ()  − 

 − 

Z 



 (− ()) +

where  =



 = 
− and

 ≡ 1

 − 2 [( − ) ( − )−  ()]

which is positive for all  6= 2. So (5) can be rewritten as

 =
1



∙




Z 

0

() − 

 − 

Z 



 (− ())−

¸
=

1



"



R 
0
() − 

−
R 

 (− ())− 



R 
0
()− () 

+ 
−

R 

 (− ()) −

#

=



 ()− 

The condition for spatial equilibrium is  ≥ 0 or

 () ≥  (23)

11The case  = is similar.
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(i) First, we show that no firm will want to move to the residential area. Suppose

a firm deviates from the business district  ∈ [0 ] to the residential district  ∈ (].
We compute the wage () that makes a worker indifferent if she resides at 1 ∈ [ ]
but shifts her workplace from  ∈ [0 ] to  ∈ []. We focus on the case:  ≤ 1.

The case   1 can be ruled out because a worker residing at 1 = −  must pay

higher land rent than a worker residing at 1 = + for all   0 due to negative rent

gradient () in the residential district. That is, the latter worker always achieves

a higher utility level, since compared to the former, their wages are the same, their

land rent is lower, and their commuting cost is the same. So if a consumer residing

at 1 =  −  is happier, so is a consumer residing at 1 =  + . Hence we focus

only on the case: 1 ∈ [].
If she works at  = (1) ∈ [0 ], in equilibrium her consumption of composite

good is the same as the consumer who lives at :

 = ((1))− (1) −  (1 − (1)) +
1



Z ∞

−∞
Π(0)(0)0

= ()−  ( − ) +
1



Z ∞

−∞
Π(0)(0)0

from (6). On the other hand, if she works at  ∈ [], her consumption of composite
good is

 = ()− (1) −  (1 − ) +
1



Z ∞

−∞
Π(0)(0)0

In order to guarantee equal utility, these two consumptions should be the same  =

. That is, the wage offered by a firm at location  for a worker at location 1

should be

() = ()−  ( − ) + (1) +  (1 − )

Then, the profit of a firm relocating from  to  and paying this wage () for a

worker living at 1 is

Π( 1) = ()− 


()− ()

= ()− 


[()−  ( − ) + (1) +  (1 − )]− () (24)

For equilibrium, this profit does not exceed Π, which was obtained before relocation:

Π( 1) ≤ Π ∀ ≤  ≤ 1 ≤  (25)
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We have
Π( 1)

1
=




[ 0 (1 − (1))−  0 (1 − )]  0

because 1 − (1)  1 −  and  00 ()  0. This implies 1 =  is the maximizer

of Π( 1). Hence, the no-deviation condition (25) is replaced with

Π() ≤ Π ∀ ∈ (] (26)

which can be rewritten as



[()− ()] + [ ( − )−  ( − )] + 

−2 [ ()−  (− ())] ≥ 0 if  6=


[()−()] + [ ( − )−  ( − )] + 

−
0 () (− ) ≥ 0 if  =

(27)

for all  ∈ (] by using (17) and (24). Observe that the term in the first brack-

ets is positive, whereas those in the second and third brackets are negative from

sgn [ ()−  (− ())] = −sgn ( − 2). Condition (27) is rewritten as



≥ max

 1
1(   ), where

1(   ) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩





−


(−())−



2


−


2
+

2
−

+(

2 ) 
2

−

2

(−0)−


2
−0


0

if  6=








− 0



2



2
−

−


2
+

2
−

+(

2 ) 
2

−

2

(−0)−


2
−0


0

if  =

and1 is finite and differentiable with respect to  ∈ (]. Condition (27) is stricter
than condition (23) because plugging  =  into (27) yields

 [()− ()] ≥ 

where  ()  0.

(ii) Second, we consider no deviation condition of a worker. Suppose a worker

deviates to from the residential district  ∈ [] to the business district  ∈ [0 ).
The consumption of composite good before deviation was

() = ()− (−1()) − 
¡
−1()− 

¢
+
1



Z ∞

−∞
Π(0)(0)0

On the other hand, the consumption of composite good after deviation is

( 1) = ()− (1) −  (| − 1|) + 1



Z ∞

−∞
Π(0)(0)0
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Let 1 = ∗1 be the maximizer of ( 1). For a symmetric monocentric spatial

equilibrium, the consumption of composite good before deviation is not smaller than

that after deviation. That is,

() ≥ ( 
∗
1) ∀ ∈ [0 ) (28)

or

min
1
[(1) +  (| − 1|)]− (−1()) − 

¡
−1()− 

¢
(29)

for all  ∈ [0 ). Condition (29) is rewritten as



≥ max

 1
2( 1   ),

where 2( 1   )

≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2





−





2


+(

2 )−(−1(1)−1)

−(|−1|)−


−

(−1()−)
 

2

−

2




2
−0


−(|0−1|)0

if  6=




−





2


1+

0


2



2
+

2
−−1()


−(|−1|)+(−1()−)

 
2

−

2




2
−0


−(|0−1|)0

if  =

Hence, the sufficient conditions for a symmetric monocentric spatial equilibrium is

given by (27) and (29).

Next, we show that there is no cross commuting in any symmetric, monocentric

equilibrium. Thus, the equilibrium specified above is the only one.

In equilibrium, for a worker residing at  to weakly prefer commuting to  instead

of e, the following should hold:
 ()−  (|− |) ≥  (e)−  (|− e|)

In equilibrium, for a worker residing at e to weakly prefer commuting to e instead of
, the following should hold:

 ()−  (|e− |) ≤  (e)−  (|e− e|)
Hence,

() =  (|e− |) +  (|− e|)−  (|− |)−  (|e− e|) ≥ 0 (30)
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should hold for all .

Suppose that there is cross commuting. Then for some e   ≤   e, we have
0() =  0 (− e)−  0 (− )

This is positive because  − e   −  and  00()  0. We also get (e) = 0, and
thus ()  0 for all   e, which contradicts () ≥ 0.
Hence there is only parallel commuting at a symmetric, monocentric equilibrium.

Thus, we conclude that the only such equilibrium is the one we have specified.

Proof of Proposition 8

Similar to the previous proof, we focus on locations in R+. The technique of

proof that equilibrium exists is guess and verify. For    ≤ , define

() =



( − ) (31)

The function  is arbitrary otherwise. Hence, for 0 ≤  ≤ ,

−1() =  − 




For   , define () = 0.

Integrating (7), we obtain:

() = −
Z

 0(−1()− )

= −
Z

 0
µ
 − 




¶


=




¡
−1()− 

¢
+  (32)

where once again  is a constant of integration.

From (6) and (32),

() =
1


[()−  (− )− ]

=
1



∙
− − 


 (− ()) +  − 

¸
Setting  =

1


( − )

= − 

2
 (− ()) +  (33)
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Observe that the residential land rent is decreasing and convex in .

Since () = 0 in (33), we get

 =


2
 ()

Plugging  into (33) yields our final expression for rent (34):

For    ≤ , define

() =


2
[ ()−  (− ())] (34)

Using the profit function and the fact that the rent for consumers and producers must

be equal at ,

For 0 ≤  ≤ , define

() =
1



½
()− () +




[ ()− ()]

¾
+



2
 () (35)

If we substitute (32) into (35), we obtain

() =
1



½
()− () +





∙
 ()− 



¡
−1()− 

¢− 

¸¾
+



2
 ()

Using () = () evaluated at  =  = , we obtain

() =


2
[()− ()]− 

2

£

¡
−1()− 

¢−  ()
¤

(36)

Then  =  +, a function of only exogenous parameters. So  can be found as

only a function of exogenous parameters by plugging  into (5). In addition, ()

(0 ≤  ≤ ) is a function of only exogenous variables by using (18).

Notice that (4) and (36) imply that profits are constant on 0 ≤  ≤ , namely

Π() = Π =  ()− 


 ()− 


 ()

Hence,

For 0 ≤  ≤ , define

() =




£
()−Π− ()

¤
To show that this represents an equilibrium, we must verify that Π ≥ 0,  ≥ 0, that
no consumer wishes to move to [0 ], and that no firm wants to move to (∞).

25



As in the previous proof, we verify that what we have constructed is an equilib-

rium. In the case of  00  0, the total land rent is

 + = 2

Z 

0

() + 2

Z 



()

=

Z 

0




[()− ()]  +



 − 

Z 



[ ()−  (− ())] 

So (5) can be rewritten as

 =
1



∙




Z 

0

() − 

 − 

Z 



 (− ())−

¸
=




 ()−  ()

The condition for spatial equilibrium is then given by

 () ≥  () (37)

which is similar to (23).

(i) First, we seek no deviation condition of a firm. Suppose a firm deviates to from

 ∈ [0 ] to  ∈ ( ]. We compute the wage () that makes a worker indifferent
if she residing at 1 ∈ [] shifts her workplace from  ∈ [0 ] to  ∈ [1 ]. As

before, we can focus on the interval of 1 ∈ [].
If she works at  = (1), her consumption of composite good is

 = ((1))− (1) −  (1 − (1)) = (0)−  () +
1



Z ∞

−∞
Π(0)(0)0

On the other hand ,if she works at , her consumption of composite good is

 = ()− (1) −  (1 − ) +
1



Z ∞

−∞
Π(0)(0)0

Because  =  for equal utility, the wage offered by a firm at location  for a worker

at location 1 should satisfy

( 1) = (0)−  () + (1) +  (1 − )

The profit of a firm relocating from  to  is

Π( 1) = ()− 


( 1)− ()

= ()− 


[(0)−  () + (1) +  (1 − )]− ()
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The no-deviation condition is given by

Π( 1) ≤ Π ∀ ≤  1 ≤ 

We have
Π( 1)

1
=




[ 0 (1 − (1))−  0 (1 − )]  0

because 1 − (1)  1 −  and  00 ()  0. This implies 1 =  is the minimizer

of Π( 1). Hence, the no-deviation condition (25) is replaced with

Π() ≤ Π ∀ ∈ (] (38)

We have

Π() = ()− 


[(0)−  () +  ( − )]− ()

= ()−(0) +



[ (− ())−  ()] +Π+




[ ()−  ( − )]

Then, (38) can be rewritten as




[(0)− ()] + [ ( − )−  ()] +




[ ()−  (− ())] ≥ 0 (39)

for all  ∈ ( ]. This is rewritten as



≥ max

 1
1(   )

where 1(   )

≡ 




+


³

2
+


2

´
+


+

 (− ())− 
³

2
+


2
− 

´
R2

−2
− (|0|) +  (− 0) 0

and 1 is finite and differentiable with respect to  ∈ (].
If we plug  =  into (39), we get

 [(0)− ()]− () ≥ 0

which is stricter than the previous condition (37).

(ii) Second, we consider no deviation condition of a worker. Suppose a worker

deviates to from  ∈ [] to 1 ∈ [0 ). The consumption of composite good before
deviation was

() = ()− (−1()) − 
¡
−1()− 

¢
27



On the other hand, the consumption of composite good after deviation is

( 1) = ()− (1) −  (| − 1|)

Let 1 = ∗1 be the maximizer of ( 1). For a symmetric monocentric spatial

equilibrium, the consumption of composite good before deviation is not smaller than

that after deviation. That is,

() ≥ ( 
∗
1) ∀ ∈ [0 )

or

min
1
[(1) +  (| − 1|)]− (−1()) − 

¡
−1()− 

¢ ≥ 0 (40)

for all  ∈ [0 ). This is rewritten as



≥ max

 1
2( 1   )

where 2( 1   )

≡ 2




+

 (−1()− ) + 
+

 (−1(1)− 1)−  (| − 1|)R2

−2
− (|0 − 1|) +  (2− 0) 0

and 2 is finite and differentiable with respect to , 1 ∈ [0 ).
Hence, the conditions for a symmetric monocentric spatial equilibrium is given by

(39) and (40).

Next, we show that there is no cross commuting in any symmetric, monocentric

equilibrium. Thus, the equilibrium specified above is the only one.

In equilibrium, for a worker residing at  to prefer commuting to  instead of e,
the following should hold:

 ()−  (|− |) ≥  (e)−  (|− e|)
In equilibrium, for a worker residing at e to prefer commuting to e instead of , the
following should hold:

 ()−  (|e− |) ≤  (e)−  (|e− e|)
Hence,

() =  (|e− |) +  (|− e|)−  (|− |)−  (|e− e|) ≥ 0 (41)
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should hold for all .

Suppose that there is parallel commuting. Then for some   e ≤   e, we
have

0() =  0 (− e)−  0 (− )  0

because − e  −  and  00()  0. We also have (e) = 0, and thus ()  0 for
all   e, which contradicts () ≥ 0.
Hence there is only cross commuting at a symmetric, monocentric equilibrium.

Thus, we conclude that the only such equilibrium is the one we have specified.

References

[1] Fujita, M. and H. Ogawa, 1982. “Multiple Equilibria and Structural Transi-

tion of Non-monocentric Urban Configurations.” Regional Science and Urban

Economics 12, 161-196.

[2] Fujita, M. and J.-F. Thisse, 2013. Economics of Agglomeration: Cities, Indus-

trial Location, and Globalization, 2nd Edition. Cambridge: Cambridge Univer-

sity Press.

[3] Götaş, A. and Ö. İ̧sçi, 2011. “A Comparison of the Most Commonly Used Mea-

sures of Association for Doubly Ordered Square Contingency Tables via Simula-

tion.” Metodološki Zvezki 8, 17-37.

[4] Hamilton, B.W. and A. Röell, 1982. “Wasteful Commuting.” Journal of Political

Economy 90, 1035-1053.

[5] Kendall, M. and J.D. Gibbons, 1990. Rank Correlation Methods. London: Ed-

ward Arnold.

[6] Lucas, R. and E. Rossi-Hansberg, 2002. “On the Internal Structure of Cities.”

Econometrica 70, 1445-1476.

[7] McMillen D.P., 1996. “One Hundred Fifty Years of Land Values in Chicago: A

Nonparametric Approach.” Journal of Urban Economics 40, 100-124.

29



[8] Ogawa, H. and M. Fujita, 1980. “Equilibrium Land Use Patterns in a Nonmono-

centric City.” Journal of Regional Science 20, 455-475.

[9] Sattinger, M., 1993. “Assignment Models of the Distribution of Earnings.” Jour-

nal of Economic Literature 31, pp. 831-880.

[10] Timothy, D. and W.C. Wheaton, 2001. “Intra-Urban Wage Variation, Employ-

ment Location, and Commuting Times.” Journal of Urban Economics 50, 338-

366.

30



 

 

                 $ 

 

 

 

 

 

 

0         y−
∗              𝑦∗               y+

∗                          𝑦               

 

 

 

               

 

 

Figure 1:  Determination of the commuting pattern 
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