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Abstract

Relatively little is known in the academic literature about the idiosyncratic returns of individual

real estate investments, though quite a few commercial properties command prices commensu-

rate with the market values of small to medium publicly traded companies. I use purchase

and sale data from the National Council of Real Estate Investment Fiduciaries (NCREIF) to

compute holding period price-appreciation returns for commercial properties. In stark contrast

with liquid asset returns, idiosyncratic drift and volatility estimates diverge as the holding period

shrinks. This puzzling phenomenon survives a variety of controls for vintage effects, systematic

risk heterogeneity, and sample selection biases. I derive an equilibrium search-based illiquid

asset pricing model which, when calibrated, fits the data very well. Thus a structural model

of illiquidity seems crucial to a descriptive theory of real estate investment returns. The model

can be extended to other illiquid asset classes and used to price derivatives such as debt claims.
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risk.
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1 Introduction

Research on real estate investments primarily focuses on aggregated or portfolio-level attributes.

Much is therefore known about the systematic returns of real estate assets. By contrast, very

little seems to have been written about idiosyncratic or property-specific real estate risk. This is

notwithstanding the importance of the subject. Whereas relatively few investors trade real estate

indices (using derivative contracts such as total return swaps), a great number of commercial real

estate investors hold concentrated portfolios. Geltner et. al (2013) suggest that in 2010 the stock

of institutional quality commercial real estate was valued at around $3 Trillion, with roughly a

third being privately held. This suggests that many direct investors in commercial real estate do

not hold well-diversified portfolios of properties and could benefit from a quantitative approach to

understanding the sources and magnitudes of idiosyncratic risk to which they are exposed. Even

ignoring that consideration, commercial real estate properties are often acquired individually and

not as portfolios. The absence of a quantitative approach to assessing individual asset risk forces

investors to rely on pro-forma analyses that ignore variability or at best subject assumptions to

sensitivity tests based on rules of thumb. Finally, commercial real estate debt, totaling more than

$2 Trillion as of 2013, is mostly secured to individual properties and, in the absence of recourse

reflects both the systematic and idiosyncratic risks to which the property is exposed.1 A solid

understanding of these risks is important for the efficient pricing of debt obligations and

structured debt products such as commercial mortgage backed securities.

How much of a property’s risk is diversifiable? Or in other words, how large is the property level

idiosyncratic risk? To my knowledge, the only other work that attempts to address the same

question is Downing, Stanton, and Wallace (2008) who back out property-level implied volatility

from CMBS loan information (much as one might do using a Merton, 1974, model). Their

annualized estimates are high and range from 22.7% for apartments to 27.2% for industrial

properties. Given that annual volatilities for transaction based property indices (such as the

NCREIF TBI) are about 12%, the estimates produced by Downing, Stanton, and Wallace (2008)

suggest that the property-specific or idiosyncratic risk comprises between 70% and 80% of the

total individual asset risk (or alternatively, the idiosyncratic volatilities range from 20% to 24%).

This has important implications for property portfolio diversification, and the pricing and risk

assessment of commercial mortgages (held by many regional banks). A potential criticism of the

indirect approach taken by Downing, Stanton, and Wallace (2008) is that it is subject to

influences outside the property market, such as movement in credit spreads due to changes in

liquidity or lending standards. In addition, the loans used in their estimates are securitized and

1The figure is taken from Table L.217 of the 2013 U.S. Federal Reserve Bank Balance sheet.
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may not be representative of the universe of commercial real estate properties. Finally, the

implied volatility may depend on the particular model of real estate price appreciation that is

used. Model misspecification may conceivably lead to volatility estimates that are not descriptive.

An important advantage to the methodology used by Downing, Stanton, and Wallace (2008) is

that it provides a forward looking assessment of volatility.

In this paper I use a more direct, though complementary, approach to measuring commercial real

estate asset-level return properties. Using data on purchases and sales of properties from the

National Council of Real Estate Investment Fiduciaries (NCREIF), I construct holding period

price appreciation returns at the individual property level.2 While this means that each property

bought and sold is typically associated with a single holding period observation, the cross-section

of properties is large and, with adequate controls, the holding period return dispersion among

properties can be viewed as a “Monte Carlo” simulation of idiosyncratic property risk.3.

In Section 2 I apply this methodology and find that the idiosyncratic mean and variance of

property log-price appreciation is a linear function of the holding period with a positive intercept

(see Figure 1). In particular, the slope of the variance is about 0.01 per year held, while the

intercept of the variance is 0.04, corresponding to an additional 20% return standard deviation

independent of the holding horizon. Under the random walk hypothesis (e.g., geometric Brownian

Motion as in the Black and Scholes, 1973, model), the slope coefficient corresponds to an

annualized idiosyncratic volatility of 10%.4 The non-zero intercept, however, is not consistent with

frictionless market pricing. Specifically, the data, when extrapolated to arbitrarily short holding

horizons, suggests that the idiosyncratic asset drift and volatility are infinite. These findings (and

the methodology) are qualitatively similar to what Goetzmann (1993) and Case and Shiller (1987)

report in the context of residential properties. They model a property’s observed price as equal to

some “true value” plus uncorrelated “noise” and identify the variance intercept with twice the

variance of the noise component. The magnitude of the noise in the case under study, nearly four

years’ worth of volatility, calls for a deeper investigation into the underlying economics.

I consider two types of explanations for these results: One is that they arise from the illiquidity of

the underlying asset, while the other explanation is that the results are spurious. To explore the

illiquidity-based explanation, I derive in Section 3 a search-based pricing model (see, for example,

Duffie, Garleanu, and Pedersen, 2005, 2007) where investors vary in how they value the income

2Henceforth, I use the term “returns” and “price appreciation returns” interchangeably.
3To motivate this, consider a simple example: Suppose that one observes the purchase and sale of 1000 distinct

but similar assets over a similar time horizon. Co-movement, or systematic risk, in the asset returns will contribute

little to the dispersion in the holding period returns. Instead, the dispersion will reflect the “typical” idiosyncratic

variance of an individual asset and measured with high precision because of the large cross section
4This is nearly half of the estimate in Downing, Stanton, and Wallace (2008).
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stream from properties, thus leading to potential gains from trade. Market inefficiency arises from

the presence of transaction costs and the inability of asset owners to entertain more than one bid

per period.5 I demonstrate that a random matching and bargaining equilibrium, in which investor

private valuations are dynamic but persistent, fits the holding period return data very well (see

Figure 3). In the model, an investor that recently acquired a property is unlikely to change his or

her valuation over a short period. Thus a short-horizon transaction results only when an investor

that recently acquired the asset meets another with a higher valuation (net of the transaction

cost). This explains why the mean observed holding period returns extrapolate to a positive value

as the holding horizon is taken to zero. When assets are illiquid, an investor will only hold for a

short period of time if a much better offer happens to come along. Moreover, the randomness in

matching and bargaining impacts observed transaction prices regardless of the horizon, and this

explains why the return variance does not vanish as the observed holding period horizon is

extrapolated to zero. If transaction costs are eliminated and if all investors can bid for any given

property at any time, the model holding period returns converge to the usual random walk result

(asset drift and volatility are constant). If each investor’s private valuation is serially

uncorrelated, then one arrives at the Goetzmann (1993) and Case and Shiller (1987) reduced-form

model of “noisy transactions” around a “true” fundamental price. With positive transaction

costs, such a model predicts a negative intercept for the mean holding period returns and is

therefore inconsistent with the data. This underscores the importance of employing a structural

model of asset illiquidity in place of one that is reduced form.

When calibrated to the data, the model provides additional insights into the illiquidity of

commercial real estate properties. The illiquidity discount, defined using the expected transaction

price relative to the average owners’ private value of the asset, is calculated to be 11.4%.

Moreover, the model predicts that the quarterly turnover in properties would be about 3%.

Finally, the model allows one to calculate the probability of sale as a function of price, which can

be important for modeling bank “fire sales” and feeds into the pricing of derivative assets such as

mortgage loans and mortgage backed securities. In the particular calibration I use, a bank would

have to discount the expected transaction price by about 21% to sell the property with

probability higher than two thirds.

While an illiquidity-based model fits the data well and can be useful for pricing, there is still the

possibility that the holding period return data employed in the calibration suffer from challenges

5Real estate properties under contract for purchase are subject to a due diligence period, typically lasting several

weeks or months, during which the price can be renegotiated by the prospective buyer and no other offer may be

entertained by the seller. Professionals refer to this as “tying up the property”. Between the due diligence period

and contracted closing date, a period that can also last several weeks to several months, the buyer may back out by

forfeiting a deposit of “earnest money” (usually a small percentage of the contract purchased price).
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that render the short-horizon inferences (and therefore calibrated model parameters) spurious.

For instance, time variation in asset volatility can cause vintage effects that bias the slope and

intercept of holding-period return variance. Random exposures to systematic risk can contribute

to spurious idiosyncratic variance. More significantly, selection bias can be important to consider

in the case of the holding returns of illiquid assets because the decision to sell is endogenous and

potentially costly, and may be linked to attributes of the return distribution.6 The latter raises

concerns that measuring means and variances using holding period returns in the manner just

described will yield results that are not representative. Section 4 demonstrates that the naive

estimates of idiosyncratic holding period means and variances appear robust to controlling for

vintage effects and random exposure to systematic risk. I also rule out several potential selection

biases. For instance, it is unlikely that the effect arises because investors prefer to hold safer

properties over longer periods of time. In addition, in order to control for the endogeneity of sale

decisions, I develop a model of optimal asset disposition and demonstrate that it cannot explain

away the effects without also making counter-factual predictions.

This paper contributes to the literature in several ways. First, I document that real estate

investment holding period returns deviate from the frictionless market prediction. Second, I

establish that this deviation is not spurious or a result of selection bias. Finally, I derive a

tractable equilibrium model for illiquid asset pricing that, when calibrated, fits the data very well.

Thus, in explaining the non-standard features of observed idiosyncratic real estate returns,

illiquidity appears the most plausible driver. In principle, the model and analysis can also be

applied to other highly illiquid assets, such as private equity transactions, rarely traded bonds,

and complex financial assets.

2 Real Estate Holding Period Returns

Real estate is costly to trade and any given property is traded infrequently. In practice,

short-horizon (e.g., quarterly) property “returns” are imputed from appraisals rather than market

prices. Appraisals, however, are based on averages of historical prices and of comparable assets,

and/or often employ simple rules of thumb (e.g., using a net income multiple). Like any kind of

estimate, appraisal-based returns tend to be smoother than the returns they attempt to capture.

Thus by their very nature, appraisal based returns can be expected, at best, to understate the

volatility of the underlying asset. At worst, appraisals based on random guesses will add

idiosyncratic noise unrelated to the actual property-level risk.

6See Fisher, Gatzlaff, Geltner, and Haurin (2003), Gatzlaff and Haurin (1997), Goetzmann and Peng (2006), and

Hwang and Quigley (2004).
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To properly measure attributes of typical property-level returns, one must therefore deploy a

different strategy. The first challenge is to obtain actual returns based on prices of purchases and

sales.7 With real estate assets, save for the rare instance, there is not enough information on

repeat sales to calculate time series attributes for a single property. Thus one must rely on a

different estimation strategy. The approach I employ is to assume that an observed

transaction-based holding period return consists of two random components: One that is

idiosyncratic to the property, and one that reflects systematic risk (e.g., a market index). Because

one can in principle observe the holding return of the systematic risk benchmark, it is possible

(e.g., using a random effects model) to separate the two components given a sufficiently large

panel.

In this section, I first describe the dataset of transaction-based property returns. I then provide

estimates of the means and variances of idiosyncratic price appreciation log-returns, and find that

these exhibit the peculiar property of having a component that is independent of the holding

horizon. Section 4 is devoted to confirming the robustness of these findings using either additional

tests or more sophisticated approaches.

2.1 The Data

Data of sold and unsold properties comes from the National Council of Real Estate Investment

Fiduciaries (NCREIF) and consists of financial and accounting information for sold properties

reported by member firms between 1978Q1 and 2014Q1. The database contains, for each

property, the acquisition date and price, the sale (or partial sale) date and net price if a sale took

place, the property net operating income (NOI), and the total capital expenditures in each

quarter, starting from the acquisition quarter (or 1987Q1 if acquisition is earlier) until 2014Q1 (or

until the property is sold or otherwise exits the database).8 For each property, appraisal-based

price appreciation and income returns are reported each quarter. Information about the property

location, real estate category, leverage, and member firm is also available.9 The following initial

filter is applied to properties in the data: The acquisition date must be documented along with a

positive purchase price. For sold properties, a sale date and a sale price greater than $1 must be

7Income flow must also be obtained to arrive at total returns. I focus on price appreciation returns for reasons to

be stated shortly.
8According to the procedures manual, NCREIF members are instructed that partial sales “...may include items

such as the sale of an easement, a parcel of land, or a single building in an industrial park” and are to report “the

consideration received, less any selling expenses incurred.” When partial sales are reported in the quarter of final

disposition, they should coincide with the net proceeds from disposition.
9Fields that are available but not used in this study include detailed appraisal valuations and breakdowns of

income, operating expenses, and capital expenditures.
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reported. In addition, the acquisition year must be equal to or precede the year in which the

property first appears in the database by no more than two years. Properties are dropped if

reported partial sales are negative or different from the net proceeds reported from the final

disposition. I restrict the study to properties belonging to one of the four major type categories:

Apartments, Office, Industrial, and Retail. Finally, I drop properties for which the time-series

sum of capital expenditures is negative or for which the transaction-based total capital

appreciation is negative.10 This results in 7010 properties that experienced a sale, 3785 properties

that exited the database for a reason other than a sale, and 7463 that have not exited.11

The holding period of property i is calculated as (qis − qia + 1)/4 where qis is the sale quarter and

qia is the acquisition quarter. Let rf,t denote the continuously compounded 3-month Treasury Bill

quarterly rate. For a property bought at date t and sold at date T , denote the purchase price by

Pit, capital expenditures at quarter s ≥ t by Cis, partial net sales at s ≥ t by pis, and the net final

disposition price by PT . The treatment of interim cash flows presents a complicating factor in

calculating holding-period returns. In particular, the riskiness of the returns will depend on the

reinvestment strategy for the interim cash flows. Real estate assets produce a significant amount

of interim cash flows and the reinvestment strategy can matter a great deal to the risk-return

profile. With liquid assets, it is customary to assume that income is reinvested in the same asset

but this strategy is not implementable with real properties. For this reason, I choose to focus on

price appreciation returns.12 To that end, the excess log of price-appreciation return over the

holding period is given by,

rApp,e
i = ln

( ∑T−1
s=t pise

∑T
s′=s+1 rI,s′ + PiT

Pite
∑T
s′=t rf,s′ +

∑T
s=tCise

∑T
s′=s+1 rf,s′

)
, (1)

where rI,s is the quarter s return on investing the proceeds from partial sales. While this

expression also appears to depend on a discretionary investment strategy, in practice only 297

properties report partial sales and the reinvestment strategy chosen has negligible impact on the

analysis. The default reinvestment return I employ with partial sales is the NCREIF Property

Index (NPI) corresponding to the property’s major asset type.

10Companies may report capital expenditures that are allocated but not actually spent. Funds that are not spent

should be eventually recorded as negative capital expenditures.
11According to the NCREIF procedures manual, exit other than a sale can also take place due to a transfer of

ownership, disqualification as an institutional-quality stabilized asset, a split into multiple properties, the destruction

or consolidation of a property, or its foreclosure by a lender.
12Another reason to focus on price appreciation returns is that mortgage debt — the most prevalent form of

individual asset financing in real estate — is typically secured to the value of the property and not directly to the

capitalized value of its past income. Thus a lender would be most interested in the risk characteristics of the asset’s

price appreciation which is independent of the income reinvestment strategy.
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The data contains many outliers and entry errors. To filter these out I first calculate the total

holding period return for each sold property assuming income is reinvested in the corresponding

NPI. I then repeat the calculation using the reported appraisal-based quarterly returns and

calculate the difference between the two returns. Absent errors in the data, this difference should

not be excessively large. I therefore drop all properties for which this difference is below the first

or above the 99th percentile (−86.15% and 126.53%, respectively).13

Although on occasion (as with the previous paragraph) I will employ appraisal-based returns,

unless specified otherwise return analyses in this paper are done using the transaction-based

holding period returns as calculated in (1). Thus, for the vast majority of properties, there is only

one return observation per sold property.

2.2 The basic result

Under the random walk hypothesis, a liquid asset indexed by i should exhibit an excess log price

appreciation return of

rApp,e
i = −(δi + ξi)τ + βir

e
m + σi

√
τεi, (2)

where τ is the holding period of the asset, rem is the excess log-return on an appropriate

benchmark index over the same holding period, δi is the dividend or income yield of the asset, σi

is its volatility, εi is a standardized mean-zero random variable that is idiosyncratic and thus

uncorrelated across assets, and ξi is a non-negative contribution from Jensen’s inequality.14 The

random walk hypothesis applied to rem implies that its variance over the holding horizon τ is

equal τσ2m, where σm denotes the market volatility.

For a property purchased at date t and sold at t+ τ , it is possible to observe τ and rem. If the

model in (2) applies to commercial real estate properties, then εi is uncorrelated across properties

and, for a fixed τ , a regression of rApp,e
i against rem should yield a residual variance and an

intercept that are both proportional to τ . In particular, holding period residual variance should

vanish with τ as should the holding period adjusted income, (δi + ξi)τ .

For various observed holding periods, Figures 1(a) and 1(b) plot the residual variances and

13Without any censorship, the correlation squared between the two return calculations is 0.49. If each return

calculation is censored independently, the correlation squared is 0.69. Censoring the difference, as described in the

text, results in fewer dropped observations and a correlation squared of 0.75.
14In principle, the parameters δi, σi, βi and ξi may vary with time. Thus one can view the constants in (2) as

reflecting holding period averages of these quantities. If εi and rem are normally distributed, then ξi = 1
2

(
σ2
i +βi(βi−

1)σ2
m

)
.
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Fig. 1: The top figure depicts point estimates and their 95% confidence intervals for the regression

residual variance in Equation (2) (each holding period corresponds to an independent regression).

The residual variance is an estimate of idiosyncratic property-level risk. The box in the figure

reports a best-fit using weighted least squares. The bottom figure reports the analogous results for

the constant regression coefficient term in Equation (2).
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intercepts from regressions as in (2).15 For each property, the benchmark used is the NPI

corresponding to the specific property type.16 In the plots the point coefficient estimate for each

horizon is shown as a dot and the 95% confidence interval is depicted using a dashed line. To

perform the regressions, the horizon of each property is rounded to the nearest integer.17 Each

plot also reports a weighted least-squares fit to the point estimates, where the inverse of the

square of the standard error in the point estimates is used as a weight. The slope of 0.0108 in

Figure 1(a) can be associated with an idiosyncratic volatility of σi ≈ 10% while the slope of

−0.087 in Figure 1(b) is an estimate of −(δi + ξi). A striking feature of both graphs is that

neither vanishes as the maturity approaches zero. The linear fit, in fact, extrapolates the graphs

at τ = 0 to positive and highly significant values both economically and statistically. If not an

artifact, these would correspond to mean and variance components that accrue to investors

independent of the holding horizon. I therefore term these the “time-independent” components of

holding period return mean and variance, respectively.

One can view the intercepts of both graphs as representing diverging drift and volatility as the

holding horizon tends to zero. These results suggest either that the holding period returns are

subject to some bias or that they are distorted by some market frictions at short horizons. In the

next section, I offer an illiquidity-based model to explain the presence of the time-independent

components. Before doing so, it is worthwhile listing the various concerns that plague the

preceding empirical analysis. First, the sample of properties used in the regression for holding

period τ versus the sample with holding period τ ′ 6= τ are in general taken from different

populations. In particular, the average acquisition years for properties declines with horizon (e.g.,

2002 for τ = 1 versus 1983 τ = 16). This raises the possibility that properties with shorter

horizons might reflect a more volatile period thereby biasing the slope of the plot in Figure 1(a)

down and correspondingly giving rise to the time-independent variance. A second concern is that

parameter heterogeneity in (2) may lead to biased estimates of the residual variance.18 A further

concern is that the observed holding period returns suffer from a selection bias because actual

holding period returns are only observed when a property is sold, and a sale is an endogenous

decision. Two such potential biases that can lead to effects documented in Figure 1 are that

15To further reduce the impact of outliers at the different horizons, in each regression based on (2) the sample of

properties is censored at the first and 99th percentiles.
16For example, if the property type is “Apartments” then the Apartment NPI is used. The different property type

indices are highly correlated, resulting in robust results regardless of the index used.
17The rounding is done to increase power. Half-integer holding horizons are randomly assigned to the integer above

or below with equal probability. The data is quarterly and the actual horizon is uniformly distributed about the

rounded horizons depicted, thus rounding should not introduce a bias into the coefficient estimate.
18When the regression is performed without using the market return as an explanatory variable, the time-

independent components of the mean and variance increase. This suggests that the effect is not driven by statistical

noise in measuring betas.
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property risk and holding periods are negatively correlated, and/or that the option to sell a

property is exercised contingent on property performance. These empirical issues are addressed

the Section 4.

3 A model of holding-period returns for illiquid assets

In the Black and Scholes (1973) model, the Sharpe Ratio for holding the asset over a period τ is

proportional to
√
τ , and diminishes to zero as τ approaches zero. In Figures 1(a) and 1(b), this

ratio is 0.076/
√

0.041 ≈ 0.37 for arbitrarily small τ . However, because commercial real estate

assets are highly illiquid and take months to transact, there is no possibility of arbitraging off this

fact. A natural conjecture is that illiquidity borne of market frictions may help explain the

peculiar properties of observed holding period returns documented in the Figures. This section

offers a liquidity-based explanation for the phenomenon, supported by a calibrated equilibrium

model.

I consider an approach reminiscent of the search models employed in Duffie, Garleanu, and

Pedersen (2005, 2007). There are N infinitely-lived properties, each producing a per-period

income of d̃t. Each property is held by an investor of type i. To calculate his or her private value

for a property at date t, investor i discounts next period’s expected income and property (private)

value by a factor 1
1+ri,t

. The discount rate ri,t is a Markov process and can take on one of a finite

number of values indexed by a ∈ A. The transition probability matrix for ri,t is

Πaa′ ≡ Prob(ri,t+1 = ra|ri,t = ra′), where a, a′ ∈ A. Denote by πUa the unconditional probability

that an investor is in state a at date t. It is assumed that πUa is non-zero for all a ∈ A.19 The

process ri,t is assumed to be independent and identical across investors, and independent of d̃t.

Each period, a property receives an offer from some, randomly chosen, investor and its owner

must decide whether or not to sell at a cost of ct. It is assumed that the number of investors is

sufficiently large so that the probability that a property receives an offer from an investor of type

a at date t is πUa . The motivation to trade in this model comes from the heterogeneity generated

by different private values. The frictions in this model consist of the limited trading opportunities

— each period the counter party is a single potential buyer rather than a market of potential

buyers — and the cost of transacting a sale. There are no constraints on the number of properties

that an investor may hold, and thus the ratio of investors to properties is immaterial.20

19If there are no absorbing states, the row vector πU is given by any row of the matrix defined by limn→∞(ΠT )n.
20The ratio of investors to properties would become important if one wished to make endogenous the number of

offers received each period by, say, including a cost to investors of embarking on a search. Here, this is finessed by

assuming that each property receives a single offer each period.
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A sale takes place if and only if the owner’s certainty equivalent (i.e., private value) of the

property value, pt(ri,t) is smaller than the investor’s certainty equivalent, pt(rj) less ct.
21 Assume

that in the ensuing bargaining the seller receives a random fraction λ̃ ∈ [0, 1] of the gains from

trade. Thus, when a sale takes place the transaction price net of costs is

pt(ri,t) + λ̃
{
pt(rj,t)− pt(ri,t)− ct

}+
(where {x}+ = max{0, x}). I assume that λ̃ is identically and

independently distributed across time and buyers/sellers, and unrelated to dt, ri,t or ct. Thus, the

property certainty equivalent of a seller of type ri,t is determined by

pt(ri,t) =
1

1 + ri,t
E
[
d̃t+1 + pt+1(r̃i,t+1) + λ̃

{
pt+1(r̃

′)− pt+1(r̃i,t+1)− c̃t+1

}+]
(3)

where r̃i,t+1 and r̃′ correspond, respectively, to the seller’s and buyer’s random discount rates at

date t+ 1 and are assumed to be independent. While r̃i,t+1 depends on ri,t via the Markov

transition process, the distribution of r̃′ only depends on the unconditional probability vector πU .

The owner’s valuation of pt(ri,t) depends on the continuation value of holding the income

producing property as well as the alternative strategy of selling (at a cost) to a prospective

investor. In turn, the continuation value depends on the long-run property value to investors in

the market.

Definition. An equilibrium is a positive and finite random variable pt(ra) that solves (3) for

every a ∈ A.

If A is a singleton set, then r̃i,t+1 = r̃′ = r and pt+1(r̃
′) = pt+1(r̃i,t+1), so that pt = E[d̃t+pt+1]

1+r

defines the equilibrium. In other words, if all investors are identical then prices are set as if the

market is frictionless and each investor discount all cash flows at the rate r. Liquidity has not role

to play in such a market because there are no gains from trade.

It is instructive to consider a situation where the owner faces multiple bidders, each having

different valuation and bargaining power. In this case, (3) becomes

pt(ri,t) =
1

1 + ri,t
E
[
d̃t+1 + pt+1(r̃i,t+1)+ max

{
0, λ̃
′(
pt+1(r̃

′)− pt+1(r̃i,t+1)− ct+1),

λ̃
′′(
pt+1(r̃

′′)− pt+1(r̃i,t+1)− ct+1),

λ̃
′′′(
pt+1(r̃

′′′)− pt+1(r̃i,t+1)− ct+1), . . .
}+]

.

If ct = 0 for all t and the number of independent bidders is sufficiently large (e.g., dense in the

support of r̃ and λ̃), then the equilibrium will approach one where only the investors with lowest

discount rates and least bargaining power will acquire the asset, and the property price will reflect

21It is assumed that investors face no funding constraints.

11



their valuation. This can be viewed as the frictionless limit in which the asset is held by those

who derive the most utility from it. If ct > 0, then even with a large number of bidders the

equilibrium price will not collapse to a single value but, transactions will be limited to prices

within a band determined by ct.

To investigate the model implications, it is specialized to the case in which the logarithm of asset

income is a geometric random walk with iid shocks. Thus d̃t+1 = dte
(µ−σ

2

2
)+σε̃t+1 , with constant

drift µ and volatility σ, and where ε̃t+1 is a standard normally distributed random variable.

Assume further that the transaction cost is proportional to the level of income, ct+1 = cdt+1.

Conjecture an equilibrium private valuation of

pt(ra) = dtQa.

Then from (3) and the model assumptions, Qa must solve the linear system of equations:

∀a ∈ A, (1 + ra)e
−µQa = (1 +

∑
a′∈A

ΠT
aa′Qa′) + λ̄

∑
a′,b∈A

ΠT
aa′π

U
b

{
Qb −Qa′ − c

}+
,

where ΠT denotes the transpose of Π. Assuming such an equilibrium exists, it is possible to refer

to an investor of type ri,t via his or her per-dividend private valuation Qi,t ≡ pt(ri,t)
dt

.

A transaction takes place at date t if and only if the arriving buyer’s private value less the

transaction cost exceeds the private value of the seller. This is true if and only if Qb −Qa′ ≥ c,
where Qb corresponds to the valuation of the prospective investor while Qa′ to that of the

incumbent owner. Thus, the realization of a transaction is a random variable whose distribution

depends on the incumbent owner type. If a trade occurs between an owner of type a and an

investor of type b at date t, the observed net transaction price is

Pt,ab = dt

(
Qa + λ̃

(
Qb −Qa − c

))
.

To analyze holding-period returns, consider a property that at date t is purchased from some

arbitrary owner of type Q̃O by an investor i of type Qi,t. If the property is subsequently sold at

date t+ τ to an arbitrary buyer of type Q̃S , then the holding period return to investor i is:

R̃i,t,τ =
Qi,t+τ + λ̃

′(
Q̃S −Qi,t+τ − c

)
Q̃O + c+ λ̃

(
Qi,t − Q̃O − c

) e(µ−
σ2

2
)τ+σ

√
τñ,

where ñ is a standard normally distributed random variable and where λ̃ and λ̃
′

are iid. Note that

the purchase price is gross of costs but the selling price is net of costs. The logarithm of the

12



holding period return separates into three sources of risk:

ln R̃i,t,τ = ln
(
Qi,t+τ + λ̃

′(
Q̃S −Qi,t+τ − c

))︸ ︷︷ ︸
Selling shock

− ln
(
Q̃O + c+ λ̃

(
Qi,t − Q̃O − c

))︸ ︷︷ ︸
Purchasing shock

(4)

+ σ
√
τ ñ︸ ︷︷ ︸

Income shock

+ (µ− σ2

2
)τ .

The income shock, whose variance grows linearly with the holding period, is independent of the

purchasing and selling shocks. The random variable, Q̃O depends on the distribution of ownership

at date t while Q̃S depends on the unconditional distribution of investor types. The two variables

are independent of each other and of Qi,t or Qi,t+τ . The latter two variables are related via the

Markov process. If τ is sufficiently large, Qi,t will not be related to Qi,t+τ , meaning that the

purchasing and selling shocks will be nearly independent. At that point, the contribution of the

non-income shocks to the holding period variance will remain constant as the horizon is increased.

Even at horizons where the distribution of Qi,t+τ depends on Qi,t non-negligibly, the selling and

purchasing shocks will not generally offset each other and will contribute to the overall variance.

3.1 A three-state example

Suppose that investors’ discount rates can take on one of three values, r1 ≤ r2 ≤ r3 and that the

transition matrix across the discount rate states is given by

ΠT
aa′ =


1− x− y x y

x 1− 2x x

y x 1− x− y

 ,

where x, y > 0 and x+ y < 1. The unconditional distribution of investor types is πU = (13 ,
1
3 ,

1
3)T ,

which also determines the distribution of Q̃S in (4).

To characterize the shock coming from purchasing the asset in (4) one must pin down the

distribution of Q̃O . This is non-trivial when Qi,t is persistent. For instance, suppose that

y ≤ x� 1 so that the unconditional fraction of investors with high discount rates (or low Qi,t) is

always significant yet the transition into high discount rate states is slow. This means that

investors with high discount rates are unlikely to be holding properties in the steady state

because the properties will have been bought from them before they ever reached the high

discount rate state (and to have purchase them in the first place the investors would have had to

be in a higher discount rate state).
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Let ΠS
ab,t correspond to the probability that a property owned by an investor of type a, just before

an offer is received at date t, is subsequently owned by an investor of type b just after sales are

consummated (or declined) at date t. Based on the modeling assumptions, one can write,

ΠS
ab,t =


πUb if Qb −Qa ≥ c∑
b′ s.t. Qb′−Qa<c

πUb′ if b = a

0 otherwise,

(5)

where it should be recalled that investor b is drawn from the unconditional distribution of

investors. Note also that ΠS
ab ≡ ΠS

ab,t is time-independent.

A steady state is achieved once the distribution of ownership across properties is not expected to

change. This is defined by the following condition on πOa , the unconditional probability that,

before the arrival of offers, an arbitrary property is owned by an investor of type a:

πOa =
∑
b,b′

πOb ΠS
bb′Π

T
b′a. (6)

In words, the distribution of ownership changes because the types of current owners (πO) change

through sales (ΠS) and then through the Markov evolution of types (ΠT ). Equation (6) asserts

that distribution of ownership is stable in the steady state. It also pins down the distribution

corresponding to the random variable Q̃O in (4).

Suppose that c, r1, r2 and r3 are such that an owner with a higher discount rate will always sell to

an investor with a lower discount rate. Then

πO =

(
4x− y + 2

6x2 + 2x(6y + 5) + 5y + 2
,

3(2x+ y)

6x2 + 2x(6y + 5) + 5y + 2
,

3
(
2x2 + 4xy + y

)
6x2 + 2x(6y + 5) + 5y + 2

)T
.

To calculate the distribution of the random variables in (4), consider an arbitrary property at

date t prior to the bid offered to its owner. The owner’s type is drawn from πO. Consider now the

randomly drawn investor, of type Qi,t who bids on this property. The investor’s type is drawn

from πU . The property will be sold to the investor making the bid only in one of three cases: If

the owner is type 2 and the investor is type 1, or if the owner is type 3 and the investor is either

type 1 or 2. The probability that the property is sold from a steady state owner of type b to a

random investor of type a is πOb π
U
a , such that Qa > Qb.

A subsequent sale at date t+ τ by the same investor that purchased at date t depends on the

distribution of offers (determined by πU ) as well as the likelihood that the original investor did

not sell at any date strictly between t and t+ τ . To pin down the latter, consider the following
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modified transition probability matrix defined via.

P̂T =



Q1 Q2 Q3 Sold

Q1 ΠT
11 ΠT

12(1− πU1 ) ΠT
13(1− πU1 − πU2 ) ΠT

12π
U
1 + ΠT

13(π
U
1 + πU2 )

Q2 ΠT
21 ΠT

22(1− πU1 ) ΠT
23(1− πU1 − πU2 ) ΠT

22π
U
1 + ΠT

23(π
U
1 + πU2 )

Q3 ΠT
31 ΠT

32(1− πU1 ) ΠT
33(1− πU1 − πU2 ) ΠT

32π
U
1 + ΠT

33(π
U
1 + πU2 )

Sold 0 0 0 1

 (7)

The matrix P̂ corresponds to the probability that a current owner of type a sells or remains the

owner next period and transitions into type a′. The “Sold” state is absorbing. Thus, the

probability that investor i still owns the same property after τ − 1 offers, and Qi,t+τ−1 = Qa′

conditional on Qi,t = Qa, is given by the aa′ element of
(
P̂τ−1

)T
. Let

(
P̂τ−1

)T
[3×3] be the upper

3× 3 submatrix of
(
P̂τ−1

)T
.

Finally, define

Π̂T
τ ≡

(
P̂τ−1

)T
[3×3]Π

T .

The matrix Π̂T
τ corresponds to the type transition probability for a single investor between t

(post-offer) and t+ τ (pre-offer), for those paths in which the property was not sold before t+ τ .

Consider the following “path”: An arbitrary property is sold to an investor of type Qi,t = Qa at

date t by an owner of type Q̃O = Qb, and is held without being successfully sold until the new

owner transitions to type Qi,t+τ = Qa′ and subsequently receives a satisfactory bid at date t+ τ

from an investor of type Q̃S = Qb′ . From the preceding discussion, we can calculate the

unconditional probability of such a path as

π(Q̃O = Qb, Qi,t = Qa;Qi,t+τ = Qa′ , Q̃S = Qb′) = πUa π
O
b

(
Π̂T
τ

)
aa′
πUb′ ,

where Qa − c ≥ Qb and Qb′ − c ≥ Qa′ . The observation of a holding period return is tantamount

to observing one of these paths. Thus, the distribution of the purchasing and selling shocks in (4),

holding λ̃ and λ̃
′

constant, and conditioning on the observation of a holding period return, is

π(Q̃O = Qb,Qi,t = Qa;Qi,t+τ = Qa′ , Q̃S = Qb′ | λ̃, λ̃
′
) =

πOb
(
Π̂T
τ

)
aa′∑

Qa−c≥Qb,Qb′−c≥Qa′
πOb
(
Π̂T
τ

)
aa′

, (8)

where the fact that πU is uniform was used to simplify the expression. For the specific example

considered, equation (8) completes the specification of the probability law for the holding period

log-return equation (4).
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3.2 Can the model explain the data?

The purchasing and selling shocks in (4) contribute to the holding period return volatility, even if

the holding period is short. An important question is whether this contribution can be as large as

identified in the data. A more difficult issue to address is whether the observed average holding

period return can have a positive intercept as suggested by the data. To see the problem, consider

the case where there is no persistence in private values. I.e., each row of ΠT is identical, which

can be achieved by setting x = y = 1
3 . In this case, all of Qi,t, Qi,t+τ , Q̃S and Q̃O are

independently and identically distributed, and every observed holding period return path in (8) is

equally likely. The selling shock component in (4) can be denoted as ln Ã while the purchasing

shock will contribute ln
(
Ã′ + c

)
, where Ã and Ã′ are identically and independently distributed.22

Because Ã′ + c first-degree stochastically dominates Ã, E[ln Ã
Ã′+c

] ≤ 0. In other words, without

persistence, it is not possible to generate a positive average holding period return as τ approaches

zero. Note that this includes the Goetzmann (1993) and Case and Shiller (1987) setting,

suggesting that their model is not consistent with the data.

To see why persistence might counteract this result, consider a situation in which types change

very slowly. In this case, when an asset is first purchased at date t by an investor with discount

rate ri,t = ra, it is most likely that ri,t+1 = ra as well (i.e., Prob(ri,t+1 6= ra)� 1). Because the

presence of transaction costs ensure that a sale will not be consummated between two investors

with the same valuation, a short holding period is most likely to be characterized by new buyer

with a higher valuation (i.e., rj,t+1 < ra). Thus the most likely situation for a short holding

period, when valuations are persistent, is that the selling price is higher than the recent purchase

price. This may appear as a large premium for short holding periods, but the causality is

reversed: The apparent “premium” is function of the fact that an investor will only hold for a

short period if a much better offer comes along. Despite the intuitive appeal of such an argument,

with realistic transaction costs, it is not clear that the effect can overcome the “negative

premium” that would be observed in the absence of persistence.

To get a better sense of whether the model delivers plausible magnitudes beyond the qualitative

effects outlined above, I undertake a crude calibration exercise where each period represents a

quarter. There are nine parameters to consider when attempting to fit to the data, and

specifically to Figures 1(a) and 1(b).23 The transition parameters x and y are set equal to each

other, and calibrated so that the observed percentage of properties sold within 6.25 years or less,

22The random variables Ã and Ã′ have the same distribution as Qi,t+τ + λ̃
′(
Q̃S −Qi,t+τ − c

)
.

23The empirical analysis in subsequent sections suggests the presence of vintage effects in Figures 1(a) and 1(b).

By fitting to the data without explicitly controlling for such time-variation, I take the view that vintage effects have

greatest impact on the standard errors but do not impact the average effect.
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50.0% in the data, is matched by the model.24 The parameters r1, r2 and r3 are set so as to

match the model holding period variance to the data and fixed at 0.0175, 0.075 and 0.125,

respectively. The parameters c and µ are calibrated to the observed median proportional selling

costs and the average annualized dividend-price ratio (the “cap rate”) in the data (respectively,

0.0212 and 0.0690).25

The holding period excess return attributes depicted in Figures 1(a) and 1(b) are adjusted for

market return and volatility. One can likewise state a risk-adjusted excess return version of

Equation (4) as follows,

ln R̃RAi,t,τ = ln
(
Qi,t+τ + λ̃

′(
Q̃S −Qi,t+τ − c

))︸ ︷︷ ︸
Selling shock

− ln
(
Q̃O + c+ λ̃

(
Qi,t − Q̃O − c

))︸ ︷︷ ︸
Purchasing shock

(9)

+ σI
√
τ ñ︸ ︷︷ ︸

Idiosyncratic asset shock

+ (µ−
σ2I
2
− rm)τ ,

where, consistent with the modeling, it is assumed that selling and purchasing shocks are not

systematic. The idiosyncratic component of asset volatility, σI , is set to
√

0.0108, the estimate in

Figure 1(a). The property market rate of return, rm, is assumed to be 10%, consistent with the

time series returns of the NCREIF Property Index and the NCREIF Transaction Based Index.26

Finally, λ̃ is assumed to be binomial with an equal likelihood of being 0 or 1.

Table 1 reports the results of the calibration as well as an exercise in which the transition

parameter x (which is set equal to y) is increased (thereby reducing the persistence of investor

valuation states). In varying these (see Models 2-4), the parameters c and µ are accordingly

varied to so that the model proportional selling costs and cap rates match the data. All other

variables are fixed. Thus, one should only view x = y as the “free parameter” in the table. The

first two columns provide the data-derived confidence interval for income growth, the one-year

holding period adjusted excess return moments, and the fraction of properties sold within 6.25

years. The estimated statistics from the data compare very well with the calibrated model values.

24Allowing y to vary freely does not make a significant impact on the calibration. The percentage of properties

sold within τ years of purchase is calculated using only properties purchased τ years prior to the end of the sample.

The denominator consists of both sold and unsold properties. To calculate this figure in the model, one multiples πO

by the vector created when the fourth entry is eliminated from the last column of (P̂τ )T in (7).
25The selling costs ratio is calculated in the data as the difference between the gross price and the net price, divided

by net price. I ignore observations with non-positive costs. In addition, the median proportional selling cost is much

more robust to outliers and is therefore employed in the calibration. The cap rate is calculated as the sum of the net

operating income in the four quarters prior to the sale divided by the net selling price.
26It is assumed in (9) that every property has a property market beta of 1, and thus the adjusted returns are net

of rm. The choice of rM = 10% is made to fit to Figure 1(b) and is well within the 95% confidence interval of the

observed index returns.
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Table 1: Calibration of the model to the raw data.

For different parameters, the table compares model-generated and actual one-year holding period adjusted excess

return moments, and the fraction of properties sold 6.25 years after purchase. The parameters r1, r2 and r3 are set

to 0.0175, 0.075 and 0.125, respectively (each period is a quarter). The idiosyncratic property volatility is set via

σ2
I = 0.0108, consistent with Figure 1(a), and the property market return rM is set to 10% consistent with time-series

estimates. The proportional cost parameter c and income growth rate µ are set so as to match observed property

income to price ratios (cap rates) and observed proportional selling costs. The transition parameters, x and y are set

equal to each other and represent the only “free” parameters varied in the table. The table reports a model liquidity

premium calculated as the average observed net selling price divided by the average private valuation of the asset

by investors that hold it in the steady state. The “fire sale discount” is one minus the ratio of the lowest private

valuation of the asset to the average observed net selling price, and corresponds to the highest transaction price for

which a sale is guaranteed.

Estimated Estimated Calibrated

Quantity 2.5th percentile 97.5th percentile Model Model 2 Model 3 Model 4

x = y (Qtrly) NA NA 0.013 0.030 0.050 0.100

c NA NA 1.228 1.228 1.228 1.228

µ (Qtrly) -0.0022 0.0141 0.0082 0.0140 0.0193 0.0282

1yr Holding Per.

Adj. Exp. Return -0.038 0.024 -0.021 -0.043 -0.041 -0.017

Adj. Variance 0.048 0.060 0.051 0.044 0.036 0.024

Fraction Sold

After 6.25 Years 0.491 0.508 0.497 0.790 0.922 0.991

Quarterly Turnover NA NA 0.030 0.065 0.100 0.168

Liquidity Premium NA NA 0.114 0.084 0.059 0.021

Fire Sale Discount NA NA 0.210 0.188 0.167 0.131
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The importance of persistence is demonstrated by the fact that data statistics are generally

incompatible with the model once x is increased. Further evidence for the goodness of model fit is

given in Figure 2 where average adjusted excess returns are calculated for various holding periods

using the various parameterizations in Table 1, and plotted alongside the data (diamonds). The

benchmark calibration appears to fit well, while the alternative models do not. Here too, the

impact of reducing the model persistence is evident. Figure 3(a) provides a closer look at the

goodness of fit of the calibration. While most of the model predictions (squares) lie within the

95-percent confidence interval (dashed vertical line) of the data (circles), there are a few

significant departures. As mentioned earlier, the standard errors reflected in the confidence

interval might be too tight given the presence of vintage effects. Figure 3(b) depicts the model fit

to the variance data reported in Figure 1(a). Though the model is simple, it appears to captures

most of the effects exhibited in the data and explain the time-independent variance component

and non-standard dependence of average returns on the holding period.

The model allows one to infer important quantities from the calibration that are not readily

observable in data. There are several measures of the illiquidity of the commercial property

market that can be naturally quantified using the model calibration and are documented in Table

1. The first is the asset turnover. The model predicts a turnover of about 3% per quarter,

calculated as the proportion of assets held by an owner that may gain from a sale, multiplied by

the probability that he or she will be matched with a suitable buyer. A second measure is the

departure of an asset from its “fundamental value”. While it is not always clear how one may

objectively define the fundamental value of an asset in the presence of frictions and heterogeneous

private values, for the sake of concreteness I define fundamental value to be the average private

value of the asset by those who hold it in the steady state. Per unit income, this is Q′ · πO. This

value is high when investor types are persistent because most of the assets will be held by

high-value types (92.8% in the case of the calibrated model) who will not sell because they receive

no gains from trade. The average observed gross transaction, on the other hand, is likely to be

relatively discounted because observed transactions are always with lower-valuation owners who

are willing to sell to someone with a higher valuation. In the steady state of the calibrated model,

this discount is 11.4%. A third measure, is the discount that must be applied to an asset to

achieve a high probability of sale. In the three-state case, one can achieve a probability of sale

greater than 2
3 only by selling the asset at a discount corresponding to the ratio of the lowest

private value by prospective investors to the expected net transaction price. In the steady state of

the calibrated model, this “fire sale” discount amounts to 21%. The ability to quantify a fire sale

discount can be useful in pricing debt contracts, in which the lending institution lacks the

expertise to manage the asset while waiting for the right investor. Likewise, it may be possible to

fine-tune the model calibration by backing out the implicit fire sale discount in loan spreads for
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highly illiquid collateral.
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Fig. 2: Average adjusted excess returns are calculated for various holding periods using the various

parameterizations in Table 1, and plotted alongside the data (diamonds).

4 Robustness of empirical findings

In this section, I argue that the economically and statistically significant time-independent return

mean and variance components are not artifacts. First I show that the effects remain at roughly

the same magnitude even after controlling for property vintage. Next, I develop an econometric

model that accounts for possible parameter heterogeneity and demonstrate that the main effects

persist. Then, I demonstrate that property-level measures of riskiness have little ability to predict

holding horizons, thus dispensing with one potential form of selection bias. Finally, while I find

some evidence for the endogeneity of sales and that this is linked to poor performance, there is

also evidence that the impact of this is negligible in practice.
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Fig. 3: The top figure plots the model predictions (squares) for expected adjusted excess returns

using the x = 0.013 calibration in Table 1. The data (circles) along with 95-percent confidence

intervals (dashed vertical line) are also depicted. The bottom figure depicts the model fit to the

variance data reported in Figure 1(a).
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Table 2: The histogram reports entries of properties into the database (i.e., “vintages”). The table

reports the average vintage for various holding periods.
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4.1 Controlling for vintage

Table 2 lists the average vintage (roughly, the acquisition date) for sold properties in the data by

holding period and presents a histogram of their initial year in the database. If property market

volatility varies through time, because vintage is not uniform across holding horizons, it stands to

reason that holding period variance will also vary with time.

To control for a vintage effect I employ a procedure motivated by the following intuition.

Consider a property purchased in 1998 and held for eight years, and suppose one can randomly

match it with two properties held for four years, one purchased in 1998 and another purchased in

2002. By “rolling” the investment from the first to the second of the four-year properties one

effectively creates an eight-year property investment initiated in 1998. Assuming all three

properties are chosen at random and that a property’s risk characteristics are not related to its

holding horizon, the model in (2) predicts no difference between the actual and the synthetic

eight year investment. For various values of k and τ , a linear program is used to match the largest

possible number of properties having holding period k × τ with k properties of (non-overlapping)

holding periods τ . When the matching entails a strict subset of eligible properties, the subset is

chosen randomly. To increase the accuracy of the estimates, and allow for all property returns to

enter the estimation (through randomization), the procedure is repeated 100 times and the

resulting statistics are averaged.27

Table 3 documents the results of the vintage matching analysis with N corresponding to the

number of “longer maturity” matched properties. The difference in regression residual variances

and intercepts (or “α’s”) is normalized by k − 1 to account for the fact that each time a property

is rolled over the time-independent variance and mean should be accrued. The t-statistics, which

reflect pooled values of the coefficients and their standard errors, are likely to be conservative. In

every case, regardless of vintage, a sequential multi-property investment strategy yields a higher

residual variance than a matched single-property investment. In seven of ten cases this difference

is statistically and economically significant, and comparable with the time-independent variance

estimate of 0.041 in Figure 1. The sum of squared t-statistics under the null that the difference is

zero is resolutely rejected by a Chi-squared test. Weighted least-squares yields an estimate of the

time-independent variance of 0.0404 with a standard error of 0.006, suggesting that the estimate

in Figure 1 does not suffer from bias because of a vintage effect. The results for the

time-independent mean component in (2) are less conclusive. The null of zero alpha difference is

only rejected at the 5% level by a Chi-squared test. The 0.0314 weighted least squares estimate of

27I report the average coefficients and their average standard errors. The standard errors provide a conservative

estimate of the error in the pooled coefficient estimates.
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Table 3: To control for vintage, properties with holding period k×τ are matched with k properties of

non-overlapping holding period τ so that the total horizon of the latter matches that of the former.

The Equation (2) regression residual variance of the k × τ horizon properties are compared with

those of the compounded returns of the matched properties. The normalized variance difference

measures the time independent variance component while controlling for vintage (likewise for the

normalized difference in regression intercepts). The GLS estimate is the error-weighted mean of

the 10 variance (or alpha) differences.

k τ N Avg Vintage (Var Diff)/(k − 1) t-stat (α Diff)/(k − 1) t-stat

2 1 321 2002 0.056 5.37 -0.004 0.09

2 2 315 2000 0.054 5.14 0.099 -2.27

2 3 240 1999 0.056 4.30 0.068 -1.27

2 4 237 1998 0.033 2.61 -0.023 0.37

3 3 126 1997 0.029 2.59 0.095 -2.08

2 5 140 1994 0.022 1.23 0.008 -0.11

2 6 76 1993 0.033 1.24 -0.055 0.58

2 7 58 1988 0.003 0.11 -0.183 2.23

3 5 39 1988 0.015 1.06 0.020 -0.43

2 8 31 1982 0.134 2.49 0.067 -0.59

Prob χ(Var Diff= 0) 4.7E-17

Prob χ(α = 0) 0.0474

Statistic GLS Estimate se

Var Diff 0.0404 0.0060

α 0.0314 0.0226
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the time-independent premium, while not statistically distinguishable from the 0.0757 estimate in

Figure 1 (difference t-test of 1.47), is also itself not statistically different from zero.

It is worth noting that there is a correlation of 50% between the time-independent variances and

the time-independent means as measures in Table 3. This supports the liquidity shock

interpretation. In addition, the outlier in each case corresponds to the τ = 7 and k = 2 matched

properties. Removing this observation changes the least squares estimates of the

time-independent variance and mean to 0.041 and 0.042 , with the latter becoming statistically

significant (t = 2.46). In summary, the time-independent variance is robust to controlling for

vintage while the time-independent mean component may not be significant after controlling for

vintage using matched holding periods.

4.2 Controlling for random effects

In practice, the appropriate market benchmark is not known and the factor loading βi is

time-varying as is the income yield, δi. Addressing all such realities is difficult enough when the

underlying asset is relatively liquid and near impossible in the case at hand where only a single

return (over an endogenously determined horizon) is available for each property. Some headway,

however, can be made by making assumptions about the nature of the property-level return

process. Specifically, assume that for each property βi and δi in (2) are “sampled” from some

distribution independently of the holding horizon, the market returns, and the property-level

shock εi.
28 In addition, to account for the time-independent components I add to (2) a random

variable that is also assumed to be idiosyncratic to the property. The resulting model for property

price appreciation excess log-returns can be rewritten as

r̃App,e = α̃0 + α̃1τ + β̃rem + σ
√
τ ε̃, (10)

where ε̃ is a standard normal random variable. The new term, α̃0, captures the one-time (i.e.,

horizon independent) risk component. The α̃1 term captures heterogeneity in properties’ δi’s and

accrues with time. In assuming that β̃ is stochastic, one allows for different sensitivities to

systematic risk across properties. Finally, ε̃ corresponds to a standardized shock to fundamental

property value that is independent across properties.29 An observation of a property’s holding

period returns is assumed to be an independent draw from the distributions of α̃0, α̃1, β̃ and ε̃,

and further assumed to be independent of τ and r2m. Furthermore, I assume that while the

28In the next subsection, I address the possibility the holding period is related to the risk characteristics of the

property.
29With essentially only one observation per property, heterogeneity in σ cannot be identified separately from ε̃.

Likewise, one cannot separately identify heterogeneity in the mean of α̃0 (i.e., the time-independent mean component).
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property’s beta and mean can be known by the manager or investors when a property is

purchased, the same is not true for the liquidity shock and return residual. Thus β̃ and α̃1 may

be correlated with each other but are independent of α̃0 and α̃1 (the latter of which can also be

correlated with each other).

The identification strategy for the joint distributional properties of α̃0, α̃1, β̃ and σε̃ loosely

follows Beran and Hall (1992) who advocate a sequence of n regressions to estimate the first n

moments of these distributions. The idea is as follows. Normalize (10) by
√
τ and write it as

r̃App,e

√
τ

= α0
1√
τ

+ α1

√
τ + β

rem√
τ

+
(
ε̃0

1√
τ

+ ε̃1
√
τ + ε̃β

rem√
τ

+ σε̃
)
,

where ε̃ and the ε̃’s are independent of βrem, 1√
τ

or
√
τ .30 Under the structural assumptions made

earlier, one can therefore consistently estimate α0, α1 and β via an OLS regression of r̃App,e
√
τ

against 1√
τ
,
√
τ and rem√

τ
. Denote the resulting residuals as ẑ. The latter are consistent (but not

efficient) estimates of
(
ε̃0

1√
τ

+ ε̃1
√
τ + ε̃β

rem√
τ

+ σε̃
)

. The squared residuals can be written as

ẑ2 = E[ẑ2] + Ũ ,

=
1

τ
σ20 + τσ21 +

(rem)2

τ
σ2β + σ2 +

2√
τ
σ0r + 2remσ1β +O(

1

N
) + Ũ , (11)

where σ2x = Var[̃εx], σ0r = σCovar[̃ε0ε̃], and σ1β = Covar[̃ε1ε̃β], while Ũ is a zero-mean random

variable uncorrelated with 1
τ , τ ,

(rem)2

τ , 1√
τ

or rem. The O( 1
N ) term signifies an expression that is

inversely proportional to the number of observations and arising from the estimation error in the

coefficients of first regression. For large N , the distributional parameters, σ20, σ
2
1, σ

2
β, σ

2, σ0r and

σ1β can again be estimated via OLS. In principle, one can continue this process and estimate

higher joint moments of the error distributions. In practice, the power can rapidly dwindle after

the second pass (i.e., beyond second moments). To avoid collinearity and identify the estimated

moments, it is important for there to be sufficient dispersion in the explanatory variables. This is

a particular problem in the data and motivates the choice of normalization by
√
τ . Normalizing

by
√
τ leads to substantially less collinearity in the second pass regression than either dispensing

with a normalization or normalizing by τ . Despite that, there is still sufficient collinearity to

make identifying σ20, σ
2 and σ0r difficult unless one further omits the σ0r interaction terms. The

actual estimation procedure attempts to correct for the inefficiency of the coefficient estimates

from the first pass arising from the heteroskedasticity of the residual (see, for instance, Hildreth

and Houck, 1968; Swamy, 1970; Raj, Srivastava, and Ullah, 1980), and proceeds as follows:

1. Regress r̃App,e
√
τ

against rem√
τ
, 1√

τ
and
√
τ (without a constant) and calculate the residuals, ẑ.

30The reason for the choice of normalization has to do with reducing collinearity in the sequence of regressions to

be described.
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2. Regress ẑ2 against 1
τ , τ ,

(rem)2

τ , 1√
τ
, rem and a constant. Calculate ẑ2p , the predicted value of ẑ2

using the regression coefficient estimates. Thus ẑ2p is an estimate of the property-specific

residual variance from the first pass regression.31

3. Correct for heteroskedasticity in the first regression by regressing r̃App,e
√
τ ẑp

against βrem√
τ ẑp

, 1√
τ ẑp

and
√
τ
ẑp

(again, without a constant).

4. Use the heteroskedasticity-adjusted first-moment coefficient estimates to recalculate ẑ2 and

regress against 1
τ , τ ,

(rem)2

τ , 1√
τ
, rem and a constant to obtain estimates of the

heteroskedasticity adjusted second-moments. Rerun this regression as needed to adjust for

collinearity.

For each integer holding horizon, the return data is censored at the first and 99th percentiles, as

was done in the regressions behind Figure 1.

Table 4 reports the results. Comparing the first two columns in each panel, adjusting for

heteroskedasticity makes little impact on the coefficient estimates. The average beta of the

properties, as might expected, is close to one. The α1 component, corresponding to an average

continuously compounded mean yield (roughly, δ − ξi in (2)) is statistically indistinguishable from

the less sophisticated τ coefficient estimate from Figure 1b. The same is true for the α0 estimate,

which is the time-independent mean component. The second pass regression exhibits collinearity

which is eliminated if the correlation between the shock ε̃0 and the residual return shock ε̃ is set

to zero (i.e., σ0r = 0). Note that this is consistent with the statistically insignificant role that this

interaction plays in the second pass regression. Once this is done, the time-independent variance,

σ20 and idiosyncratic return volatility, σ, are well identified, relatively stable, and also statistically

indistinguishable from the estimates in Figure 1a. The third and fourth regressions in Table 4

panel B imply that there is little to no identifiable variation in betas and deltas across

properties.32 In summary, controlling for heterogeneity makes little to no impact on detecting and

measuring the presence of the time-independent return components in holding period returns.

A side benefit of the methodology used in the subsection is that it can be extrapolated to

incorporate additional controls and factors influencing α0, σ
2
0 and σ2. This will be further

pursued in Section 5

31Note that collinearity should not impact the estimate of ẑ2p.
32One can constrain the variance estimate σ2

β to be positive using non-linear least squares. All this achieves is to

drive the estimate of σ2
β to zero.
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Table 4: Panels A and B report the first and second stage regressions for estimating the model

with random effects in Equation (10). The estimation procedure is described in the text. The time-

independent variance component is σ20 in Panel B while σ2 corresponds to the volatility component

of idiosyncratic risk.

Panel A.

(1) (2)
r̃App,e
√
τ

Adj r̃App,e
√
τ

β 0.960 0.946

(48.80) (52.34)

α1 -0.0875 -0.0864

(-63.62) (-65.20)

α0 0.0787 0.0748

(12.37) (10.54)

Observations 6287 6287

Panel B.

(1) (2) (3) (4) (5)

ẑ2 Adj ẑ2 Adj ẑ2 Adj ẑ2 Adj ẑ2

σ21 -0.0000736 -0.0000900 0.000242 0.000184

(-0.13) (-0.16) (1.01) (0.79)

2σ1β -0.00445 -0.00443 -0.00421

(-1.18) (-1.18) (-1.12)

σ2β -0.0749 -0.0755 -0.0791 -0.118

(-1.62) (-1.63) (-1.72) (-3.89)

σ20 0.0618 0.0616 0.0419 0.0421 0.0404

(2.05) (2.04) (10.17) (10.21) (14.56)

2σ0r -0.0290 -0.0289

(-0.66) (-0.66)

σ2 0.0227 0.0228 0.0121 0.0122 0.0113

(1.38) (1.38) (4.81) (4.85) (11.72)

Collinearity Yes Yes No No No

Observations 6287 6287 6287 6287 6287
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4.3 Endogeneity I: Investor risk preferences

If property investors prefer to hold riskier properties for shorter periods of time, then this might

be confused for the time-independent components in Figures 1a and 1b. To explore whether there

is a basis for this channel, I investigate whether determinants of property risk have any power to

predict holding periods. To do this, various property-level attributes are compiled to create a

time series panel where each quarter the dependent variable is set to one if a property is within

four quarters of its final sale.33 All properties in the data are used, including those that exit for

reasons other than a sale. The following is a list of the cross-sectional variables used in the

regression along with their expected relation (if any) to the property’s risk. Each, in principle,

would be available to the property investor before the decision to sell is made.

SqFt — Square footage proxies for size. A larger property is more likely to have a well

diversified pool of tenants and therefore less idiosyncratic risk.

JV — A property owned as a joint venture may be more speculative.

Age when acquired — Older properties may have more idiosyncratic risk.

Percent Leased — Higher vacancy may signify higher risk .

Loan spread — If the property is mortgaged, then the spread of the initial interest rate over

the average prevailing mortgage rate paid by other properties proxies for the property’s risk.

Property type — Apartment/Office/Industrial/Retail.

Region — East/Midwest/South/West

Appraisal-based lagged return — The accumulate total return on the property (appraisal

based) lagged four quarters.

33The decision to sell a property typically takes place months before an actual sale is consummated.

29



Appraisal-based time series properties — The property’s appraisal-based time-series of

returns, up to four quarters before its last quarter in the database, is regressed against its NPI

benchmark to calculate the property’s appraisal-based market adjusted R2, market β, and

idiosyncratic variance.

Mgr Type — A dummy variable equal to one if the property is owned by the largest firms.

Firms are sorted by number of owned properties in the database and the cutoff defined at the

20th percentile (i.e., the smallest firms in aggregate own 20% of the properties).

Table 5 reports the results of a logistic regression (vintage year dummies are included and are

significant, but are not reported in the table). For continuous variables, the “Marginal impact”

column reports the change in probability of disposition if the explanatory variable is shifted from

its 10th percentile in the database of sold properties to the 90th percentile. For dummy variables,

this column reports the impact of changing the variable from zero to one.

Small size, JV ownership, property age, vacancy, and high loan spreads all seem to be associated

with a higher probability of sale and therefore a propensity towards shorter holding horizons.

Intuitively, these are all linked to higher risk. On the other hand, there is much evidence that

apartment buildings are the least risky property type, and yet the regression associates it with

significantly higher probability of turnover. In addition, arguably the most direct proxy linking

idiosyncratic risk to holding horizon should be the imperfectly measured idiosyncratic volatility

obtained from appraisal-based returns. This measure, however, is significantly linked to a lower

propensity to sell and therefore a longer holding period. It is also important to note that the sum

of the absolute impact of the the variables with the “wrong” sign (i.e., Apartments and

Idiosyncratic variance) is about 5.3% which is 66% greater than the sum of the absolute impact of

the effects with the “correct” sign. Finally, by far, the variables with greatest impact on the

probability of asset disposition, with a sum of absolute impact of 16.0%, are not obviously linked

to idiosyncratic risk: The percentage and magnitude of systematic risk in appraisal-based returns

(adjusted R2 and β), whether the property is owned by a large investor, and the property’s

accumulated appraisal-based performance.

The single most impactful property characteristic linked to the decision to sell is, surprisingly, the

diversifiability of its returns. The more idiosyncratic the return, as measured by the

appraisal-based adjusted R2 relative to the corresponding NPI benchmark, the more likely it is to

be sold.34 That said, the time-independent effects identified are net of a systematic risk exposure,

34A natural concern is that the appraisal-based R2 might be artificially low for properties with short holding

horizons because of the shorter time series available. This motivates the use of properties’ adjusted R2 in the logistic
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Table 5: Results of a logistic regression for the probability of a property sale. The dependent

variable is one if a property is within four quarters of a sale and zero otherwise. All properties (sold

and unsold) and quarters in the data are used. The explanatory variables are property-specific

attributes.

Variable Coeff t-stat Marginal impact

SqFt -1.08E-07 -4.47 -0.0034

JV 0.1060 5.43 0.0075

Age when acquired 0.0061 11.35 0.0119

Percent Leased -0.5002 -8.75 -0.0085

Loan spread 2.2742 2.65 0.0005

Apartments 0.5007 20.49 0.0394

Industrial -0.0430 -1.76 -0.0030

Office 0.1705 6.83 0.0123

East 0.0527 2.50 0.0037

Midwest -0.0093 -0.39 -0.0006

South 0.1723 8.71 0.0124

Lagged return -0.7748 -20.05 -0.0272

Idiosyncratic variance -6.9031 -13.50 -0.0135

R2
a -1.7288 -38.69 -0.0950

β 0.0145 9.23 0.0043

Mgr Type 0.5835 20.09 0.0339

Const -6.154 -14.61

Observations 228,935
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and to explain them away one must argue for a positive relationship between the magnitude of

appraisal-based idiosyncratic time series risk and the likelihood of a sale — a relationship that

appears to be solidly rejected by the data.

Summarizing, while some risk-related property-level variables do predict disposition, this is not

consistent across measures and the economic magnitude does not appear decisive. In particular,

there is no compelling evidence demonstrating that the magnitude of idiosyncratic risk is

positively linked to shorter holding periods. Thus it does not appear that the time-independent

effects are an artifact of a preference among managers for holding properties with less

idiosyncratic risk over longer periods.

4.4 Endogeneity II: Strategic asset disposition and holding period returns

Property investors have the option but seldom the obligation to sell their investments.

Consequently, the holding period of an asset, τ , is endogenously determined and potentially

contingent on the property’s performance. This raises concerns that a property’s holding horizon

may be related to observable aspects of the return distribution. A natural economic link between

τ and idiosyncratic risk attributes is as follows: An investor will purchase a property only if it is

deemed to provide risk-adjusted value (i.e., “alpha”) on a forward-looking basis and will the sell

the asset when this is no longer the case. Thus, to the extent that the previous statement is

correct, the observation of a sale indicates that the investor has updated the property’s return

distribution parameters over the holding period.35

Suppose, for instance, that the investor purchases the property believing that its annualized alpha

is 2%. If the property underperforms, the manager will update his or her beliefs. Sufficient

underperformance will eventually cause the manager to conclude that the alpha is zero or

negative, at which point the property will be sold. The logistic regression in Table 5 supports this

view in that negative appraisal-based performance in the year prior to a sale is one of the most

significant predictors of a sale. If properties are mostly sold because they underperform up to

some threshold, then the risk-adjusted price paths associated with sold properties will only

regression. To further allay such concerns, the adjusted R2 is only calculated when the number of observation available

for the time-series regression equal or exceed 10. I substitute the median adjusted R2 of the former for the remaining

properties in the database. Whether followed or not, this procedure does not qualitatively alter the results of the

logistic regression.
35Properties will also be sold to finance the purchase of more lucrative properties. As long as a held property delivers

risk-adjusted value, selling for this purposes is only necessary for financial constrained entities. The companies in the

database tend to be large and seemingly well-capitalized institutional investors. In addition, real estate assets possess

high collateral value suggesting that selling over-performing assets to fund other purchases will be exceptional.
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portray a strict subset of possible price paths and thus exhibit a lower variance. One concern is

that this will be more pronounced for properties held over a longer period of time.

To explore this and the empirical implications, consider a model of a single property whose

risk-adjusted, cumulative and continuously compounded price appreciation returns evolve as:

drt = drOt + drUt ,

where rOt corresponds to the part of the return process observable by the investor (e.g., the

income stream from the property, its appraised value, etc.), and rUt is not observed. Suppose that

the investment’s abnormal returns or α(t) is a constant that is not known to the manager. When

the property is first purchased, the investor’s prior over α(t) is normally distributed with mean α0

and variance η2. From observing rOt , the investor updates at = Et[α(t)] accordingly. Here, Et[·]
corresponds to a conditional expectations based on all observable information. Assuming that the

observed part of the return process is Brownian motion with instantaneous innovation σWdWt,

the manager observes

drOt = α(t)dt+ σWdWt

with rO0 = 0, and must use this to update his or her estimate of the expected value of α(t).

Because rOt and the manager’s prior are jointly normally distributed, a standard result (see

Theorem 12.1 in Liptser and Shiryayev, 1978) is that their joint dynamics is given by

drOt = atdt+ σWdWt (12)

dat =
σW
κ+ t

dWt, κ =
σ2W
η2

, (13)

where a0 = α0. Assume that the unobserved (until the sale at t = τ) component of the property

return evolves as

drUt = σZdZt,

where Zt is standard Brownian motion that is uncorrelated with Wt such that W0 = 0, and with

rU0 = 0.36 Thus, the evolution of the total returns realized when the property is sold is

drt = drOt + drUt = atdt+ σWdWt + σZdZt, (14)

where r0 = 0 and Z0 = W0 = 0, and where at evolves according to (13). Suppose that the

manager will sell the property at the first instance, τ , that the expected value of α(τ) falls below

some threshold αL < α0. I.e., τ = inftEt[α(t+ s)] ≤ αL for all s > 0. Given the martingale

property of the updating rule (which is an optimal forecast), Et[α(t+ s)] = at is constant for all s.

Thus a sale takes place at holding period of τ if and only if τ is the first passage time for at = αL.

An important result follows from this observation.

36One can also consider rUt to be observed by the manager but containing no information about α(t).
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Proposition 1. Let α̂ ≡ α0 − αL. At the first passage time, τ = inft{at ≤ αL},

rτ = σZZτ − κα̂+ αLτ . (15)

Thus E[rτ ] = −κα̂+ αLτ and VAR[rτ ] = σ2Zτ .

Proof. The result follows from the observation that rOt = (κ+ t)(at − α0) + α0t. To see this, first

note that this equation holds at t = 0. Next, consider that

d[(κ+ t)(at − α0) + α0t] = atdt+ (κ+ t)dat = atdt+ σWdWt = drOt .

Thus equality follows from the fact that rOt and (κ+ t)(at − α0) + αt are processes with identical

evolutions that coincide at t = 0. One can therefore write,

rt = σZZt + (κ+ t)(at − α0) + α0t.

Evaluating this at t = τ , the first passage time defined by aτ = αL yields (15). The expected

value and variance of rτ follow from the fact that Zt is independent of τ .

If κα̂ is fixed, then Proposition 1 establishes that, despite the endogeneity of the decision to sell,

the variance of holding period returns should still be proportional to the holding period. While it

may be possible that variability in κα̂ across investors leads to the time-independent variability in

holding period returns, the model makes a counter-factual prediction.37 Specifically, the

additional variation should also appear in the observable cumulative returns for holding periods

near the first passage time. In other words, the additional variation should also appear in

appraisal-based cumulative returns with holding periods close to the actual holding period of the

property. Figure 4 depicts the appraisal-based cumulative returns for holding the property until

two quarters before the sale.38 The dots and dashed lines portray the point estimate and

associated 95% confidence interval for each holding period variance. It is evident that the

time-independent component is missing. In fact, the variance is in line with what one would

predict for a random walk process using time-series (i.e., quarter by quarter) estimates of

volatility. Indeed, the square symbols correspond to the average quarterly time-series variation in

the appraisal-based returns multiplied by the number of periods.39

37Assume κ is on average equal to ten, corresponding to an investor with ten years of experience for forming a

prior and an average α̂ of 5%, and that κα̂ is uniformly distributed from 25% to 75%. This is sufficient to deliver a

time-independent variability of 0.042, in line with the observed quantity.
38In practice, it makes little qualitative difference in the results whether one uses a lag of one or two quarters. In

principle, the sales price may be known a few months before the sale is recorded and may therefore be incorporated

into the appraised value one quarter before the sale.
39To employ an analogy, the endogenous sale model in Proposition 1 predicts that appraisal-based cumulative

returns would behave like a translated Brownian bridge rather than Brownian motion. This implies that the time-

series variation and holding period variation should not line up as they do in Figure 4.
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Fig. 4: Point estimates and their 95% confidence intervals for the regression residual variance in

Equation (2) (each holding period corresponds to an independent regression). Appraisal-based

holding period returns are used with holding horizons lagged two quarters before a sale occurs.

The square boxes correspond to estimates of the quarterly appraisal-based time-series volatility

multiplied by the holding horizon.
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A related alternative model is that properties are sold if they underperform to a low threshold αL

(as in the model above) or overperform to high threshold αH (e.g., the property is sold to exercise

an option for redevelopment). In this case, the distribution of holding period returns should be

bimodal, and the results in Proposition 1 will be modified to

VAR[rτ ] = σ2Zτ + p(τ)
(
1− p(τ)

)
(τ + κ)2(αH − αL)2, (16)

E[rτ ] = −κα0 + (κ+ τ)
(
p(τ)αL +

(
1− p(τ)αH

)
, (17)

where p(τ) is the probability that a sale occurs because of underperformance rather than because

of overperformance.40 This expression is non-zero at τ = 0, thus mimicking the time-independent

variance effect. Given sufficiently high precision it may even be made to fit both Figure 1a and

1b, as long as α0 − αL > αH − α0. The problem, however, is the prediction of bi-modality: The

holding period return distributions of underperforming and overperforming properties should

separate with time. Table 6 reports the results of the Hartigan and Hartigan (1985) “dip” test for

unimodality at each integer holding horizon and vintage year combination for which at least 40

observations are available. All 43 tests, save for one, are unable to reject the null of a unimodal

distribution at any conventional level.41

In summary, while models of strategic disposition can account for the time-independent effects,

they also make counter-factual predictions about the appraisal-based and actual return

distributions, suggesting that this type of endogeneity is not a main driver behind the observed

time-independent holding period return components.

5 Determinants of individual return variance

The analysis in Section 4.2 can be expanded to investigate the determinants of heterogeneity

among property holding period returns. The covariance between ε̃ and α̃0 in (10) is shown to be

statistically insignificant in Table 4 and the corresponding interaction term subsequently dropped

because it is collinear with the other regressors in (11). This leaves open the possibility of further

identifying heterogeneity in both the volatility component, corresponding to σ2 and the

time-independent variance component corresponding to σ20. To this end, rewrite (11), leaving out

the terms that were found to be insignificant, as

ẑ2 =
1

τ
σ20 + σ2 + Ũ .

40It is straight forward to derive an expression for p(τ).
41Visual inspection and kernel density estimates of the number of modes confirm the unimodal distribution of the

holding period returns.
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Table 6: Results of a Hartigan and Hartigan (1985) “dip” test for deviations from unimodality

of the holding period returns. Tests are done separately for different vintages to control for time

variations in property return distributions. A low p-value rejects the nll of a unimodal distribution.

Holding Period Vintage n dip p-value Holding Period Vintage n dip p-value

1 2001 43 0.034 0.96 4 2000 83 0.031 0.89

1 2002 53 0.045 0.67 4 2001 54 0.063 0.22

1 2003 88 0.027 0.94 4 2002 55 0.052 0.41

1 2004 65 0.042 0.60 4 2003 44 0.049 0.69

1 2005 98 0.050 0.17 4 2005 42 0.057 0.48

1 2006 78 0.053 0.24 4 2006 47 0.052 0.53

4 2007 55 0.030 0.97

2 1996 43 0.071 0.20

2 2001 51 0.055 0.40 5 2000 53 0.035 0.92

2 2002 50 0.046 0.68 5 2001 50 0.073 0.15

2 2003 76 0.049 0.32 5 2002 46 0.049 0.63

2 2004 82 0.038 0.66 5 2006 56 0.032 0.96

2 2005 65 0.034 0.90 5 2007 78 0.033 0.84

2 2011 52 0.036 0.93 5 2008 65 0.030 0.96

3 2000 41 0.044 0.83 6 1999 50 0.043 0.79

3 2001 78 0.033 0.84 6 2000 45 0.045 0.76

3 2002 127 0.113 0.00 6 2006 65 0.033 0.91

3 2003 123 0.043 0.22 6 2007 59 0.053 0.35

3 2004 81 0.021 0.99

3 2007 58 0.025 0.98 7 2000 41 0.063 0.38

3 2010 62 0.064 0.16 7 2004 43 0.036 0.96

7 2005 40 0.035 0.95

7 2006 122 0.028 0.83

8 1999 41 0.046 0.80

8 2005 43 0.042 0.85
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Both σ2 and σ20 can be viewed as average effects of a more complex variance structure that can be

captured via

ẑ2 =
1

τ
X ′1 · b1 +X ′2 · b2 + Ũ . (18)

Where the Xi’s are vectors of property-specific characteristics and the bi’s can be interpreted as

their marginal contribution to the idiosyncratic variance of the property. The vector b1

corresponds to contributions to the time-independent variance (i.e., σ20), while the vector b2

corresponds to contribution to time series volatility (i.e., σ2). Here too one has to be watchful of

collinearity when including the same characteristics in the sets corresponding to X1 and X2.

I begin by adding vintage effects to the original specification. This is done by identifying X2 with

a constant and a set of year dummies, where each dummy variable takes the value of one if it

corresponds to the property’s entry year into the database and zero otherwise. The X1 is only

identified with a constant and therefore measures σ20 “directly”. By recalling that each property

appears once in the regression, it can be seen that these dummies control for time variation in

property market volatility that may give rise to an artificial time-independent variance

component. Table 7 reports estimations of the model in (18) both unconditionally as well as when

the set of properties is restricted by region, property type, investor type and ownership structure.

The unconditional regression demonstrates that the time-independent variance is robust to

vintage effects. Moreover, the idiosyncratic volatility component (the σ2) is higher than estimated

without controlling for vintage (see Table 4B, Model 5). The coefficients in the regressions

restricted by geography, while suggestive of some heterogeneity, are not statistically

distinguishable from their unconditional counterparts. The evidence for heterogeneity among

property types is a bit stronger. The idiosyncratic variance of Apartments resides almost

exclusively in the time-independent component, meaning that when held over long horizons the

idiosyncratic risk of apartments is amortized and investors face mainly systematic holding period

risk. By contrast, office properties carry substantially higher time-series volatility and are thus

more likely to separate from their benchmark index over long holding horizons. The table also

reveals some difference between properties held by large versus small investors: Large investors

hold properties that are significantly less susceptible to a time-independent shock, consistent with

the notion that they hold more liquid properties. While there is an economically significant

difference between the volatility of separately owned properties versus those held through joint

ventures, this difference is not statistically significant.

Table 8 reports the results from a different set of regressions. This time, the full set of properties

is employed and dummies are used, as part of X2, to isolate the effects of geography and property

types. In addition, the property’s log of age at acquisition, average vacancy, and log of square

footage are also incorporated into X2 along with the vintage effects. Only a constant (i.e., 1
τ ) and
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Table 7: Structural investigation of the second-stage regression, Equation (18). Year dummies are

included to control for vintage. Each row reports the regression coefficients for restricted property

subset. The σ20 column reports the estimated time-independent variance component and the σ2

column reports estimates of the idiosyncratic volatility component.

Subset σ20 t-stat σ2 t-stat N Vintage effects

Unconditional 0.0428 13.89 0.0189 4.82 6287 Yes

Region

W 0.0524 9.32 0.0206 3.58 2040 Yes

S 0.0387 7.25 0.0094 1.00 1890 Yes

M 0.0367 4.09 0.0214 2.82 981 Yes

E 0.0417 6.43 0.0166 1.25 1376 Yes

Property type

A 0.0604 8.93 -0.0067 -0.14 1526 Yes

I 0.0411 8.99 0.0163 3.92 2191 Yes

O 0.0351 5.55 0.0325 3.05 1685 Yes

R 0.0428 4.63 0.0192 1.92 885 Yes

Investor Type

Small 0.0547 6.95 0.0087 0.84 1239 Yes

Large 0.0378 11.21 0.0217 5.23 5048 Yes

JV

No 0.0450 13.46 0.0187 4.87 5099 Yes

Yes 0.0355 4.50 -0.0208 -0.41 1188 Yes
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average vacancy are used for X1 because of collinearity considerations. From this exercise it is

once again evident that geography does not significantly contribute to the variance estimates.

Property type, however, does appear to be important for the volatility component, with office

properties being the riskiest, followed by retail. Size is not a key determinant of the volatility but

property log-age and vacancy are positively and significantly related to it. By contrast, vacancy

appears to reduce the time-independent risk (corresponding to the 1
τ interaction term), although

the regressions suggest the possibility that this is due to collinearity with the separate vacancy

and 1
τ terms.

Overall, these estimates together with the analysis in the previous sections suggest that a

“typical” property will exhibit an idiosyncratic σ2 between 0.01 and 0.02 (i.e., σ ∼ 10% - 14%),

and a time-independent variance resembling a one-time illiquidity shock (assessed when the

property is sold) of roughly 0.04 (σ0 ∼ 20%), with adjustments made for property type and

property risk characteristics such as vacancy, size, and age.

6 Conclusions

Real estate risk is different from the risk of liquid traded assets. Though this may seem

self-evident, quantifying the risk of individual real estate assets has been left relatively unexplored

in the literature. I use purchase and sale data from the National Council of Real Estate

Investment Fiduciaries (NCREIF) to compute holding period returns for commercial properties

and estimate the typical idiosyncratic risk associated with individual assets. Analysis of this data

suggests that idiosyncratic risk comes in two forms: a volatility component similar to that

exhibited by liquid assets measuring between 10% and 14% per year (annualized); and a

time-independent variance component that persists at all horizons with standard deviation of

roughly 20%. Average holding period returns also appear to exhibit a positive time-independent

component. The estimates appear robust to various specifications and controls. The most

plausible explanation for the presence of the time-independent components in holding period

returns is the underlying asset illiquidity. A search-based illiquid asset pricing model calibrated to

model parameters does a good job of capturing all of the effects. The model can also be applied

to the pricing real estate derivative instruments such as debt or mortgage backed securities. It

can also be extended to other illiquid assets, such as rarely-traded bonds, private equity, or

complex financial assets.
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Table 8: Structural investigation of the second-stage regression, Equation (18). Year dummies

are included to control for vintage. Explanatory variables are listed in the second column and

contribute to the risk component in the first column.

(1) (2) (3) (4) (5)

σ2 size -0.000224 -0.000299 -0.000580 -0.000672

(-0.26) (-0.35) (-0.69) (-0.80)

σ2 Avg. Vacancy 0.0705 0.0271 0.0766 0.0315

(5.67) (3.98) (6.27) (4.76)

σ2 Age at acquisition 0.00134 0.00137 0.00149 0.00154

(1.97) (2.02) (2.24) (2.31)

σ20
1
τ 0.0490 0.0385 0.0427 0.0496 0.0386

(10.93) (10.37) (13.84) (11.10) (10.42)

σ20 Avg. Vacancy × 1
τ -0.110 -0.116

(-4.16) (-4.39)

σ2 Industrial -0.0000698 0.000274 0.000832

(-0.04) (0.14) (0.51)

σ2 Office 0.00539 0.00605 0.00684

(2.62) (2.94) (4.07)

σ2 Retail 0.00393 0.00412 0.00377

(1.65) (1.72) (1.89)

σ2 Midwest 0.00143 0.00152 0.00155

(0.60) (0.64) (0.79)

σ2 South 0.00267 0.00301 0.00174

(1.35) (1.51) (1.05)

σ2 West 0.00200 0.00209 0.00143

(1.01) (1.06) (0.87)

σ2 Const. 0.00552 0.00963 0.0153 0.0106 0.0155

(0.32) (0.55) (3.50) (0.62) (0.91)

Observations 4033 4033 6287 4033 4033

Vintage effects Yes Yes Yes Yes Yes

t statistics in parentheses
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