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Abstract
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1 Introduction

The COVID pandemic accelerated the widespread adoption of technologies that en-
abled households to work from home (WFH) and the amount of WFH is expected to be
several times higher post pandemic than pre pandemic. We postulate that the mass
adoption of remote-work technology during the pandemic permanently raised the pro-
ductivity of working from home relative to working at the office. We investigate the
effect of this change in relative productivity on where we work, our incomes, where
we live, and the demand for and price of office space and housing. To do so, we specify
a model where workers in telecommutable occupations can freely allocate their time
to working from home or in the office. The model details the key tradeoffs to working
from home: There is no commute, which saves time, but the productivity at home may
differ from the productivity at the office. Workers that choose to work from home also
choose how much physical space to rent at home and in the office. All workers choose
where to live, how much to consume, and how much housing to rent.

We provide evidence on the frequency of WFH prior to the pandemic suggesting
that WFH is not a perfect substitute with work at the office. Specifically, prior to the
pandemic, very few workers that spent at least some full days working from home
spent all days working from home. We thus model WFH and work at the office as po-
tentially complementary in production. We then estimate the model using data on oc-
cupational shares, wages, household locations, and the frequency of WFH by location.
Our benchmark estimates imply an elasticity of substitution (EOS) in production of
full days of WFH and work at the office of 3.6, with a 95% confidence interval of 0.998
to 6.105. Since working from home and at the office are complementary, some com-
muting to the office will occur once the pandemic ends. This suggests that workers
will not move en masse to remote, uncommutable areas with low taxes and a low cost
of living but may move farther out in their current metro area, to places with long but
feasible commutes and lower housing costs.

We simulate the model to understand the impact of the pandemic on WFH tech-
nology and its implications. We first study a “before” period, call it 2019, where we
match the observed shares of WFH for workers in telecommutable occupations. Given
the model structure, this pins down the relative level of WFH technology prior to the
onset of the pandemic. We then study an “after” period, call it 2022, where we find
the relative level of WFH technology that would allow the share of full days of WFH
to quadruple relative to the pre-pandemic level. This increase in time spent working
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from home is supported by survey evidence, reported in Barrero, Bloom, and Davis
(2022) and Mortensen and Wetterling (2020), on worker and firm expectations about
time spent working from home once the COVID-19 pandemic ends. The assumed pre-
to post-pandemic change in days of WFH allows us to size the gain in WFH produc-
tivity that occurred during the pandemic.

The change in relative total factor productivity (TFP) of WFH that is required to
generate a fourfold increase in the number of days worked from home is large: 48%
for low-skill workers and 83% for high-skill workers. Although WFH productivity can
change over time due to slow-moving TFP growth, the model allows for a very rapid
change in WFH productivity via an adoption externality. Specifically, the model in-
cludes a mechanism through which widespread adoption of WFH technology during
the COVID-19 pandemic increased the productivity of WFH relative to the productiv-
ity of working in the office.

This change in relative productivity causes a major, permanent shift towards WFH
and away from work at the office, reducing the demand for office space and leading
to an approximately 8% decline in office rents in the central business district (CBD)
when the supply of office space is fixed. Residential rents rise, especially in the outer
suburbs, due to increased demand for home office space. Our counterfactual simula-
tions suggest these rent increases translate into a rise in home prices of 14% in areas
near the CBD and 25% in the outer suburbs. We show that after the supply of space
in residential areas has a chance to increase, full days of WFH increase even more.
Because high-skill workers are more likely to work in telecommutable occupations,
the improvement in relative WFH productivity widens income inequality. Finally,
the model forecasts a small decline in the productivity of work at the office due to a
decrease in agglomeration economies.

The long-term effects of COVID on income and productivity depend on WFH tech-
nology being available but not yet fully adopted. Overall, our model suggests that the
pandemic will lead to higher lifetime income for the working population because it
forced many households to work at home, which in turn raised WFH productivity and
thus income for those workers. While the gains we report in WFH productivity would
have most likely happened eventually, the pandemic accelerated the process.

2



Related Literature

Our paper relates to five distinct literatures. The first is on how technological in-
novations get adopted and diffuse. Comin and Mestieri (2014) discuss the diffusion
process in detail and several drivers of the pace of technological adoption. Katz and
Shapiro (1986) and Brock and Durlauf (2010) theoretically study technology adoption
in the presence of network externalities. A positive externality in technology adoption
in WFH technology is consistent with the process that Foster and Rosenzweig (2010)
posit for health innovations.

The second literature we speak to is the effect of technological adoption on house-
hold lifestyles. Greenwood, Seshadri, and Yorukoglu (2005) argue that the consumer
durable goods revolution that arose from the invention and diffusion of electricity
liberated women from the more menial tasks associated with home production. A
related literature discusses how this home-production technology influences the use
of time spent working at the office or working on home production in response to
changes in the macroeconomic environment; see, for example, Benhabib, Rogerson,
and Wright (1991), McGrattan, Rogerson, and Wright (1997), and Aruoba, Davis, and
Wright (2016).

A more recent literature directly studies WFH. Bloom, Liang, Roberts, and Ying
(2014) and Emanuel and Harrington (2020) find that “call center” workers are more
productive when they work from home. We study a broader class of workers whose
work is less routine, on average, than call-processing work, so their work from home
may be less productive. Our focus, however, is on the substitutability between work-
ing at home and office work. Understanding this substitutability is important for
understanding the long-term implications of changes to WFH technology. While Gas-
par and Glaeser (1998) present suggestive evidence that the telephone complements
rather than substitutes for face-to-face interaction, our estimates using more recent
technologies suggest that WFH is an imperfect substitute for face-to-face interactions.
Our findings also demonstrate how the COVID shock could permanently increase ag-
gregate productivity. Instead of studying the productivity of WFH, Mas and Pallais
(2017) study how much workers value the option to work from home. They find that
prospective call center employees are willing to take an 8% pay cut to work from home.
This finding suggests there may be benefits from an increase in relative WFH produc-
tivity beyond higher levels of consumption. Dutcher (2012), Bartik, Cullen, Glaeser,
Luca, and Stanton (2020), Morikawa (2020), Barber, Jiang, Morse, Puri, Tookes, and
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Werner (2021), Behrens, Kichko, and Thisse (2021), PwC (2021), Gibbs, Mengel, and
Siemroth (forthcoming), and Kruger, Maturana, and Nickerson (forthcoming), pro-
vide additional evidence and discussion of the productivity of WFH before and during
the pandemic.

The three papers studying WFH that are most closely related to ours are Kaplan,
Moll, and Violante (2020), Delventhal, Kwon, and Parkhomenko (2022), and Delven-
thal and Parkhomenko (2021). Kaplan, Moll, and Violante (2020) abstract from urban
form but specify disutility from WFH, home production, and work at the office. They
allow for imperfect substitution between WFH and work at the office. While our con-
cern in this paper is not with pandemic policies, the imperfect substitution in the
disutility of WFH and work at the office would likely predict, as our paper does, a hy-
brid post-pandemic office rather than a solution where a large percentage of workers
never go to the office.

Delventhal, Kwon, and Parkhomenko (2022) and Delventhal and Parkhomenko
(2021) model the geography of a city and firm and worker location choices in consid-
erable detail, but assume that the changes in WFH behavior are exogenously pre-
determined. We consider a simpler structure of a city, in the spirit of Favilukis and
Van Niewerburgh (2021), but we allow workers to optimally allocate their time be-
tween working at the office and at home. In addition to modeling the driving engine
of the increase in WFH, our estimation of the EOS allows us to infer the relative
change in WFH productivity that is required to generate an expected quadrupling
of time worked from home once the pandemic subsides. In contrast to an increase
in productivity, Delventhal and Parkhomenko (2021) argue that workers received
disutility from the option to WFH prior to the pandemic and that a preference shift
over the course of the pandemic caused the increase in WFH. Delventhal, Kwon,
and Parkhomenko (2022) assume that working from home and working at the office
are perfect substitutes in production such that the main spatial implications of their
model regard movements of people across rather than within cities. Our empirical ev-
idence is inconsistent with Delventhal, Kwon, and Parkhomenko (2022)’s assumption
of perfect substitutes.

We predict that the improvement in WFH productivity will lead to a further widen-
ing of income inequality because WFH technology is more widely available to high-
skill workers. Our finding is consistent with evidence from Krussel, Ohanian, Rios-
Rull, and Violante (2000), that rising income inequality since the 1970s is largely
attributable to technological innovation that benefits high-skill workers. Violante
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(2008) summarizes the evidence on skill-biased technical change. Finally, our paper
is related to Beaudry, Doms, and Lewis (2010), who study the implications for wages
and income inequality of the endogenous adoption of a skill-biased invention (the per-
sonal computer) within a model of urban economics.

Finally, our work relates to how cities respond to shocks in the short run and the
long run. Ouazad (2021) surveys this literature. Our model predicts that the trend
towards suburbanization will continue, which is consistent with Ouazad (2021).1 The
evidence suggests that natural disasters tend to have only transitory effects on city
structure (Davis and Weinstein, 2002; Ouazad, 2021), while factors that influence
productive capacity, such as transportation, tend to have permanent ones (Bleakley
and Lin, 2012; Brooks and Lutz, 2019). Our model predicts that the COVID-induced
shock to the productivity of WFH will have long-lasting effects on city structure.

In the next section, we present some key facts about the frequency of WFH along
with our conception of WFH for the model. Section 3 presents our full model of house-
hold location and productivity. Section 4 describes how we estimate the EOS of work-
ing at home and working at the office and calibrate the other parameters of the model.
In Section 5 we run counterfactual experiments of the model, showing how changes
to WFH technology affect the allocation of time of workers in telecommutable occu-
pations, incomes, and rents. In Section 6, we compare our model’s implications with
alternative views on the increase in WFH during the pandemic. Section 7 concludes.

2 WFH Before the Pandemic

Our conception of WFH focuses on full days worked at home rather than simply a few
minutes here and there doing quick tasks that could as readily be done from a cell
phone as from a laptop. While these quick tasks permit additional productivity, our
paper is primarily concerned with the spatial implications of WFH. Therefore, the key
dimension is the tradeoff between commuting to work at the office vs. WFH.

Before providing a full spatial model where people choose where to live and how
much space to rent over a given year, we provide a descriptive analysis of the fre-
quency and duration of work activities done from home in the United States in the

1Brueckner, Kahn, and Lin (forthcoming), Gupta, Mittal, Peeters, and Van Nieuwerburgh (2022a),
Haslag and Weagley (forthcoming), Li and Su (2021), Liu and Su (2021), and Ramani and Bloom (2022)
also document an increased tendency toward suburbanization.
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years just prior to the pandemic and of longer-term trends in the frequency of full
days spent on WFH. We use data from the Current Population Survey (CPS), the
American Time Use Survey (ATUS), the Leave and Job Flexibility (LJF) module of
the CPS, and the General Social Survey (GSS). The ATUS and LJF are both CPS sub-
modules. The ATUS data allow us to examine time use within one randomly selected
day per respondent. Each ATUS respondent is observed on a single day. We use the
ATUS weights to estimate the share of days involving WFH so that our estimates rep-
resent the shares of all days even though the ATUS oversamples weekends. Our full
sample includes all respondents who were age 15 or older and currently employed
but not self-employed. The LJF survey, which was completed by a subset of ATUS
respondents in 2017 and 2018, asks workers directly how frequently they work full
days exclusively from home. The GSS, which was used in early WFH studies by Mas
and Pallais (2017) and Mas and Pallais (2020), asks respondents, “How often do you
work at home as part of your job?” Conducted in 2006, 2010, 2014, and 2018, the GSS
provides a longer time series on WFH than the LJF.

The first three columns of Table 1 report the percentage of all days that include
WFH using definitions ranging from broad (any observed WFH) to narrow (full work-
days with only WFH), as reported from the ATUS in 2017-2019.

Column 1 of Table 1 reports the fraction of days classified as “any WFH,” defined
as a day with a reported work activity of any duration performed at home. This
broad notion of WFH would include, for example, days where short work activities like
checking email in the evening were performed at home but the bulk of the workday
was spent at the workplace. In the full sample, 23.7% of days involve any WFH. That
figure varies by education group, from 13% for workers with a high school degree or
less to 43% for workers with an advanced degree.

Column 2 of Table 1 reports the fraction of days classified as “only WFH,” defined
as a day with a reported work activity of any duration performed at home and no work
activity performed at the workplace. This notion of WFH, though narrower than “any
WFH,” is still somewhat broad in that it includes days on which very little work was
done, as long as all of it was done at home. In the full sample, 9.9% of days involve
only WFH. The figure again varies by education group, ranging from from 3.8% for
workers with a high school degree or less to 20.3% for workers with an advanced
degree.

Column 3 of Table 1 reports the fraction of days classified as “only-WFH full days,”
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defined as a day with four hours or more of work activities performed at home and no
work activity performed at the workplace. This narrow definition of WFH is close to
the one in our model, in which workers must choose what fraction of full work days
to spend at home and what fraction of full work days to spend at the office. In the
full sample, just 4.9% of days are only-WFH full workdays. The education gradient in
this classification is the steepest: 8.6% of days for workers with a bachelors degree or
higher, 10.4% for workers with an advanced degree, and only 1.9% for workers with a
high school degree or less.

Finally, column 4 of Table 1 reports the fraction of days that workers report work-
ing from home in the LJF module. These self-reported WFH percentages are slightly
smaller than the percentages in column 3 coming from direct observation in the
ATUS, but they exhibit similar patterns in terms of the relative frequencies of WFH
across subgroups.

Figure 1 presents trends from 2003-2019 in the share of days classified as “only-
WFH full days” from the ATUS by broad education category.2 The data show a large
increase over this period in the frequency of only-WFH full workdays, with this trend
concentrated almost exclusively among workers with more than a high school degree.
For workers with a bachelor’s degree or higher, the share of only-WFH full workdays
more than doubles, from 4.0% to 8.5%, and for workers with some college but no bach-
elor’s degree the share more than triples, from 1.5% to 5.0%. In contrast, for workers
with a high school degree or less, the share of only-WFH full workdays exhibits no
strong time trend.

Figure 2 plots data from the GSS to show the frequency of WFH over time. Given
the specific question in the GSS relating to WFH, these data may include partial
days of WFH. This figure extends a figure shown in Mas and Pallais (2020) to include
workers that ever work from home and the data for 2018. The figure shows small,
gradual increases in the share of workers that report working from home at least
once a week and in the share of workers that report occasionally working from home.
Importantly, far more workers occasionally work from home than frequently work
from home. In no year do more than 15% of workers report working from home more
than once a week, but every year more than 30% of workers report ever working from
home within a year.

2We plot three-year moving averages, pooling years t-1, t, and t+1 for the calculation depicted at
year t. We exclude observations from 2020 from the moving average calculation for year 2019.
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Table 2 provides more detail on the frequency of WFH as reported in the GSS.
Only about 6% of all workers report mainly working from home, while about 40% of
workers work from home with some frequency. Workers that report usually working
from home constitute only about 15% of all workers that ever work from home.

To summarize, when we focus on full days of WFH, the data reveals that 1) full
days of WFH are much more common among college-educated workers, 2) far more
workers occasionally work from home than usually work from home, and 3) WFH was
slowly increasing in the years leading up to the pandemic. Our model thus allows for
heterogeneity in the ability and productivity of WFH between college-educated and
non-college-educated workers. Our model also allows some workers to work some of
their workdays at the office and some of their workdays at home. In particular, our
model allows for the possibility that WFH complements work at the office. The fact
that few remote workers telecommute 100% of the time suggests this functional form.

Intuitively, complementarity between the two types of work may arise because
most jobs involve a variety of tasks, some of which are better performed at home and
some of which are better performed at the office. For example, some workers experi-
ence fewer interruptions from colleagues when working from home, so deep-thinking
tasks might be easier to accomplish there. At the other extreme, routine tasks can
easily be accomplished from home. Collaborative work, on the other hand, is likely
to be easier in the office given the high costs of scheduling every single interaction
with a colleague from home. While it is often easier to complete a well-defined task
at home, it may be easier to start a collaborative one at the office.

Finally, our model specifies mechanisms through which the frequency of WFH can
increase over time. We have in mind that, in normal times, the relative productivity
of WFH changes slowly, and explains the slowly moving positive trend in WFH for
educated workers shown in Figure 1. The model also specifies an adoption externality
that can cause a large jump in relative productivity of WFH. This jump, in turn, may
rapidly alter a household’s optimal mix of WFH and work at the office and induce
large changes along the extensive margin. For perspective, Figure 1 shows that WFH
approximately doubles in the 16 years between 2003 and 2019; available evidence
suggests WFH will quadruple from pre pandemic (2019) to post pandemic (2022 and
beyond). This suggests that the process determining WFH productivity was different
during the pandemic than in the 16 years prior. We explain this difference with an
adoption externality.
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3 Model

3.1 Overview

Households make a set of choices in a given sequence to maximize expected utility.
First, they choose where to live from one of n = 1, . . . , N locations. Next, households
in a teleworkable occupation choose whether to work for a firm that allows workers
to work full days at home, a WFH firm, or a firm that does not allow WFH, a non-
WFH firm. Wages at WFH and non-WFH firms may differ. Furthermore, wages at
WFH firms vary depending on the mix of days worked at home and days worked at
the office. Households choosing to work at a firm that allows WFH also choose days
to work at home, home-office equipment to rent, and home-office space to rent.

Each day worked at the office involves a commute to the CBD that costs time and
resources. Commuting costs are multiplicative rather than fixed in the budget and
time constraints. We explain in Appendix A how a daily model of whether or not to
go to work each day, a fixed number of hours in the workday, and a fixed daily cost
of commuting maps to an annual model with a multiplicative cost of commuting if
households choose the number of days in a year in which to work at the office. While
the optimal number of hours to work within a workday and the reasons why people
typically lump work into five days each week rather than distributing it evenly over
seven are interesting questions in their own right, we take these norms as given in
order to focus on the implications of WFH for cities.

The production technologies for WFH firms and non-WFH firms differ. This allows
the quantity of WFH to change in multiple ways over time, even when the fraction of
households that work in telecommutable occupations is fixed. The fraction of house-
holds that choose a WFH firm is the extensive margin of WFH. How much households
at a WFH firm work from home is the intensive margin of WFH. Thus, a change in the
relative productivity of WFH can change both the extensive and intensive margins.

Labor markets are frictionless and perfectly competitive such that workers’ wages
reflect their marginal product of labor. Households have different preferences for
WFH and non-WFH firms. Therefore, if workers have a positive preference for being
able to WFH, competitive labor markets imply the wages will be lower at firms that
allow WFH. However, the production technology at WFH firms combines the output
workers produce at home and at the office in a way that allows for the possibility that
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the two types of work are complementary.

3.2 Household Environment

A measure 1 of worker households live in a metro area with a CBD. Households in the
model vary with respect to their skill and occupation. There are two skill levels, high
and low, and two types of occupations, telecommutable and not. We use the notation
ι to index types of workers. ι = 1 refers to high-skill workers working in a telecom-
mutable occupation, ι = 2 to low-skill workers working in a telecommutable occupa-
tion, ι = 3 to high-skill workers working in a non-telecommutable occupation, and
ι = 4 to low-skill workers working in a non-telecommutable occupation. A worker’s
type is pre-determined and permanent. We denote the shares of worker types in the
population by πι, ι ∈ 1, .., 4.

3.2.1 Location Preferences

Denote the expected value of utility of non-housing consumption, housing, leisure,
and firm choice (for type ι = 1, 2 households) for households of type ι living in location
n as Xnι. Household j, living in location n at the start of the period, receives utility
equal to

Vnιj = ν [anι +Xnι]︸ ︷︷ ︸ + enιj.

≡ Vnι
(1)

anι are amenities enjoyed by all type ι households living in location n and enιj are
amenities from living in location n by type ι households that are specific to household
j.3 We assume enιj is drawn i.i.d across locations n, types ι, and households j from the
Type 1 extreme value distribution such that ν scales the deterministic portion of Vnιj
relative to the variance of the draws of enιj.

3To focus on the implications of WFH for city structure, we abstract from the potential for endoge-
nous amenities due to neighborhood sorting emphasized by Diamond (2016), Couture and Handbury
(2020), and Couture, Gaubert, Handbury, and Hurst (forthcoming).
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3.2.2 Determining Xnι for Households in Telecommuting Occupations

Let κ = 0 denote a non-WFH firm and κ = 1 denote a WFH firm. A household j of type
ι (ι = 1 or ι = 2) living in location n and working for a firm of type κ ∈ 0, 1 receives the
following utility

Xκ
nιj = Xκ

nι + (1/ζ) εκnιj .(2)

As specified, the utility of households living in n and working for a firm of type κ

has two components: a deterministic one, Xκ
nι, and a stochastic one, (1/ζ) εκnιj. We

will precisely define the deterministic component of utility later, but for now note
that it includes utility from consumption, housing, and leisure, all of which may vary
across type of firm κ, given location n and household type ι. εκnιj is drawn i.i.d. across
all locations, types, and households from the Type 1 Extreme Value Distribution; ζ
scales the variance of those shocks relative to the deterministic component of utility.
By including ζ in the model, we can match the elasticity of firm choice conditional on
location choice. We allow this elasticity to differ from the elasticity of location choice
with respect to expected utility, which is determined by ν.4

Utility when employed by a non-WFH firm. Households of type ι = 1 or 2 that
live in n and work for a firm operating in the CBD that does not allow WFH (κ = 0)
receive utility from consumption (c0nι), housing (h0nι), leisure (`0nι), and the fraction of
discretionary time to spend at the office (b0nι) according to

X0
nι = (1− αι) ln c0nι + αι lnh0nι + ψι ln `0nι.(3)

The financial commuting costs associated with a full year of commuting to the CBD
are equal to τn and depend on location n. A household of type ι living in location n sup-
plying b0nι fraction of a full year of labor thus earns a net annual income of (w0

ι − τn) b0nι.
The household spends this labor income on consumption, c0nι, and housing, h0nι. The
rental price per unit of housing in location n is rn. Given a total endowment of time in
the year of 1, the quantity of leisure enjoyed by a household spending b0nι percentage
of the year working is 1− (1 + tn) b0nι, where tn is the round-trip time spent commuting

4Delventhal and Parkhomenko (2021) assume that idiosyncratic household preferences for the pair
(residence location, firm location) are drawn iid across pairs, so a single variance parameter determines
the elasticity of the household’s choice of both firm and residence locations.
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from location n.

They thus face the budget and time constraints of

0 =
(
w0
ι − τn

)
b0nι − c0nι − rnh0nι(4)

0 = 1− (1 + tn) b0nι − `0nι.

In equations (3) and (4), the 0 superscripts denote that the household works at a
non-WFH firm (κ = 0), and w0

ι denotes the wage paid by non-WFH firms to type ι

households that spend 100% of their discretionary time at work.

Utility when employed by a WFH firm. Households of type ι = 1 or ι = 2 living
in n and working at a WFH firm (κ = 1) receive

X1
nι = χι + (1− αι) ln c1nι + αι lnh1nι + ψι ln `1nι.

The 1 superscripts denote that the household works at a WFH firm (κ = 1). This is
the same utility function as for households choosing a non-WFH firm except that it
includes an additive preference-shifter, χι, which represents a number of factors that
affect the desirability of working at a WFH vs. a non-WFH firm. We include χι in
utility to allow the model to match employment shares at non-WFH and WFH firms.
In Appendix B, we show that this model is isomorphic to that of a home production
model in the style of Benhabib, Rogerson, and Wright (1991) where households have
four uses of time: work at the office, WFH, leisure, and work spent producing non-
marketed consumption (such as home-cooked meals or clean laundry) using time and
housing as inputs. We thus abstract from home production to focus on changes to
WFH.

They face budget and time constraints modified to account for the fact that WFH
takes time, commuting costs only apply to time spent at the office, and renting a
home office and home equipment is costly. Further, the gross compensation function
for workers at WFH firms, ωι

(
lbnι, l

h
nι, s

h
nι, k

h
nι

)
, depends on (a) the percentage of total

time in the year to worked at the firm in the CBD, lbnι, (b) the percentage of total time
in the year worked at home, lhnι, (c) the size of the home office, shnι, and (d) the amount
of equipment and software the household rents for use in the home office, khnι. Their

12



constraints are thus

budget : 0 = ωι
(
lbnι, l

h
nι, s

h
nι, k

h
nι

)
− τnlbnι − c1nι − rn

(
h1nι + shnι

)
− rkkhnι

time : 0 = 1− (1 + tn) lbnι − lhnι − `1nι.

3.2.3 Xnι for Households in Non-Telecommuting Occupations

Households of type ι = 3 or 4 work in an occupation that does not allow telecommuting
receive utility from consumption, housing, and leisure according to

Xnι = (1− αι) ln cnι + αι lnhnι + ψι ln `nι.

They face the budget and time constraints of

0 = (wι − τn) bnι − cnι − rnhnι
0 = 1− (1 + tn) bnι − `nι.

As indicated by the ι subscript, the wage for these households may differ from the
wage for households of the same skill level that have a telecommuting option but
work for a non-WFH firm.

3.3 Firms and Production

Non-WFH Firms. Each firm in the model employs one worker of type ι living in
location n. Denote the TFP of type ι working at a non-WFH firm as Zι. For any
given set of wages and prices, a firm employing labor, bnι, capital in the form of both
equipment and software, knι, and office space, snι, receives profits

ynι − wιbnι − rkknι − rssnι
where ynι = Zιb

θb
nιk

θk
nιs

θs
nι.

(5)

wι is the prevailing wage rate for a worker of type ι working at a non-WFH firm, rk is
the cost per unit of equipment and software, and rs is the cost per unit of office space
in the CBD. 5

5While the worker’s location does not affect their TFP, workers in different locations may choose
different amounts of labor supply. A different labor supply will in turn affect the amount of office
space and business equipment the firm rents for the worker, such that the subscript n on the vari-
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WFH Firms. A firm that hires a household living in location n of type ι = 1 or 2

supplying lbnι units of labor at the firm and lhnι units of labor at home with shnι units of
home office space and khnι units of equipment and software at the home office produces
output of

ynι =
[(
ybnι
)ρ

+
(
yhnι
)ρ]1/ρ(6)

where ybnι is output produced while working at the firm and yhnι is output produced
while WFH.

The production functions determining output from WFH and work at the office are

ybnι = Abι
(
lbnι
)θb (kbnι)θk (sbnι)θs

yhnι = Ahι
(
lhnι
)θb (khnι)θk (shnι)θs .

kbnι and sbnι are equipment and software and office space rented at the CBD by this
firm for household of type ι living in location n.6

3.4 Technology

TFP of Working at the Office. Denote H as the aggregate quantity of high-skill
labor worked at the office during the period. For high-skill households (type ι = 1

or ι = 3), TFP at the office is positively affected by H via a high-skill agglomeration
externality

non-WFH firm TFP, ι = 1, 3 Zι = Z̄ιHδb

WFH firm TFP while at the office for type 1 Ab1 = Āb1Hδb .

ables in equation (5) is necessary. We assume Cobb-Douglas production functions for both non-WFH
firms and for the output from WFH and work at the office for WFH firms. Jones (2005) discusses the
microfoundations for the use of Cobb-Douglas production functions in macroeconomics. In addition to
being consistent with the balanced growth path and the microfoundations, a key advantage of using
a conventional functional form for a production function is that we can use well-established, existing
estimates to parameterize the model.

6Note that if firms cannot observe lhnι, khnι, or shnι directly, we assume they can observe home output
yhnι and hours of work at the office lbnι, which is sufficient to determine kbnι and sbnι given the production
function.
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In this formulation, TFP at the office can change over time due to changes to the
human capital externality, or due to exogenous changes in Z̄ι and Ābι .7

TFP of WFH. For type ι = 1 and 2, we specify

Ahι = Āhι L
δn
h(7)

where

Āhι = Ahι
[
(Lmaxh )διh

]
.(8)

Lmaxh is the maximum amount of time that households in aggregate spent working at
home in any previous year and Lh is the current aggregate amount of WFH. Equa-
tion (7) specifies that Ahι can change over time due to exogenously increasing TFP,
i.e., changes to Ahι , changes to how much other workers are working from home, or
changes to the adoption externality if the total amount of time that households spent
working at home in any previous year increases.

Equation (7) allows for both adoption and network externalities. The network ex-
ternality is akin to a standard agglomeration externality as it depends on the current
amount of WFH. This implies that if there is a large drop in the amount of WFH
being done, its productivity falls. In contrast, the adoption externality in equation
(8) is due to households learning how to use the technology. It is a reduced form for
a more complex human capital acquisition process — one capturing the idea that if
suddenly many more people have had experience working at home, then all workers
will be more productive in the future at working at home. Consistent with the earlier
literature on technology adoption (Greenwood, Seshadri, and Yorukoglu, 2005; Brock
and Durlauf, 2010, e.g.,), this specification implies that people do not forget how to
use a technology once they have adopted it.

Commuting Speed. Denote Ln as the aggregate quantity of work at the office in
the CBD by households living in location n during the year and define dn as the dis-

7Gould (2007), Rosenthal and Strange (2008), Bacolod, Blum, and Strange (2009), Roca and Puga
(2016), and Rossi-Hansberg, Sarte, and Schwartzman (2019) all find evidence that agglomeration
economies in production exist primarily for high-skill workers.
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tance from location n to the CBD. We define aggregate distance commuting, V, as

N∑
n=1

dnLn.

Following Couture, Duranton, and Turner (2018), we assume that the travel speed of
any commuter, S, is subject to a negative congestion externality in aggregate distance
spent commuting, determined as

S = S̄Vγ

such that time spent commuting from location n is dn/S. Couture, Duranton, and
Turner (2018) estimate a specification where log commuting speed per vehicle is a
linear function of (MSA total) log vehicle time traveled. Equation (2) on page 729 of
Couture, Duranton, and Turner (2018) can be rewritten as

logS = const. + θ log (Total Time Traveled)

logS = const. + θ log (Total Distance Traveled) − θ log(S)

logS = new const. + γ log (Total Distance Traveled) .

where γ = θ/ (1 + θ). For example, if θ = −0.13, then γ = −0.15.

3.5 The Decision Problems

3.5.1 Household Choices

Household j chooses the location that provides the maximum utility. Define Vι =

ln
N∑
n=1

eVnι. Before any of the values of enιj are realized, the probability that a household

of type ι chooses location n′, fn′ι, is

fn′ι =
eVn′ι

eVι
.

Decisions of Type 1 and 2 Households After choosing where to live, households
working in teleworkable occupations choose whether to work for a non-WFH firm or
a WFH firm. A household j living in location n and of type ι = 1 or 2 chooses to work
for the type of firm offering the highest value of Xκ

nιj. Before the values of εκnιj are
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realized, the probability that a household living in n works for a particular firm of
type κ′, gκ′nι, is equal to

gκ
′
nι =

eζX
κ′
nι

eℵnι
where ℵnι = ln

1∑
κ=0

eζX
κ
nι .(9)

The expected value of living in location n after the location choice has been made but
before εκnιj is realized is

Xnι = (1/ζ) (ℵnι + Γ)

where Γ is Euler’s constant.

In Appendix C, we show that optimal household choices for households at non-
WFH firms satisfy

`0nι =
ψι

1 + ψι

b0nι =

(
1

1 + ψι

)(
1

1 + tn

)
c0nι = (1− αι)

(
w0
ι − τn

)
b0nι

rnh
0
nι = αι

(
w0
ι − τn

)
b0nι.

Households that choose a WFH firm then choose lbnι, lhnι, shnι, and khnι. These choices
determine the gross compensation offered by a WFH firm to the household, ωι

(
lbnι, l

h
nι, s

h
nι, k

h
nι

)
.

As shown in Appendix D.1, for workers at WFH firms leisure is a constant fraction
of total discretionary time, and consumption and housing are (1− αι) and αι frac-
tions of income net of financial commuting costs, expenditures on home offices, and
expenditures on equipment and software, which implies

c1nι = (1− αι)
[
ωι
(
lbnι, l

h
nι, s

h
nι, k

h
nι

)
− τnlbnι − rnshnι − rkkhnι

]
rnh

1
nι = αι

[
ωι
(
lbnι, l

h
nι, s

h
nι, k

h
nι

)
− τnlbnι − rnshnι − rkkhnι

]
`1nι =

ψι
1 + ψι

Additionally, the marginal impact on income of an extra unit of home office space
must be equal to the rent on that space, ∂ωι/∂shnι = rn. Finally, the impact on income,
less commuting costs of an extra day at the office and adjusted for time spent com-
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muting that extra day, must be equal to the impact on income of an extra day working
from home, i.e., (

1

1 + tn

)[
∂ωι
∂lbnι
− τn

]
=

∂ωι
∂lhnι

.(10)

In Appendices C and D we derive optimal quantities and choices for all types of
households and firms. Firms observe individual worker output from WFH and labor
supply at the office. Additionally, when we derive the optimal quantities of business
capital and office space rented for WFH firms, we assume that each household work-
ing for a WFH firm owns that firm and that these inputs are therefore jointly chosen
along with all other variables to maximize household utility.

For households working at WFH firms, we show that the optimal ratio of days
worked at the office to days of WFH satisfies

(
lbnι
lhnι

)
=

(
rs

rn

)−ρθs
1−ρ
(
Abι
Ahι

) ρ
1−ρ
[
(1 + tn) +

τn
(1 + ψ) (cnι + rnhnι)

]−(1−ρθk−ρθs)
1−ρ

.(11)

Households spend a larger fraction of their days working at home as Ahι
Abι

rises, as rents
rise in the CBD relative to the residential locations, and as both types of commuting
costs rise.

3.5.2 Firm Choices

Non-WFH Firms Under competitive labor and factor markets, the firm maximizes
profits by setting

wιbnι = θbynι,(12)

rkknι = θkynι,(13)

rssnι = θsynι.(14)

After substitutions, and using the assumption of constant returns to scale (θb+θk+θs =

1), firm output from employment for a household of type ι living in location n is equal
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to

ynι =

(θk
rk

) θk
θb

(
θs
rs

) θs
θb

(Zι)
1
θb

 bnι.(15)

Total wage compensation paid to a household of type ι living in location n is θbynι,
implying that wι is equal to the term in brackets multiplied by θb; the quantity of
equipment and software rented by the firm is θkynι/rk; and the quantity of office space
rented by the firm is θsynι/rs.

WFH Firms Given yhnι and lbnι, the firm chooses kbnι and sbnι to maximize ynι − rkkbnι −
rssbnι. The choices satisfy

y1−ρnι

(
ybnι
)ρ−1

θk
(
ybnι/k

b
nι

)
= rk

y1−ρnι

(
ybnι
)ρ−1

θs
(
ybnι/s

b
nι

)
= rs

Since labor markets are competitive such that firms make zero profits, the firm pays
any household supplying lbnι, lhnι, khnι, and shnι the output that remains. We characterize
the solutions for the optimal quantities of these variables in Appendix D.2.8

3.6 Equilibrium and Solution

An equilibrium in this economy is a vector of prices for business capital rk, office space
in the CBD rs, housing and home office space in locations 1, . . . N , rn; a wage rate for
each type of worker ι = 1, . . . , 4 working at a non-WFH firm, wι; a wage function
ωι
(
lbnι, l

h
nι, s

h
nι, k

h
nι

)
for each type of worker ι = 1, 2 able to work at a WFH firm; and

commute times tn for locations 1, . . . N such that

• type ι = 3, 4 households choose the location in which to live and consumption,
housing, and labor supply to maximize utility given all commute times, wages
and prices subject to budget and time constraints,

• type ι = 1, 2 households maximize utility by choosing the location in which to
8To be specific, in Appendix D.2, we derive quantities assuming that the household owns the firm

or (equivalently) that the firm chooses quantities of office space and business equipment jointly with
household decisions on labor supply, home equipment, and home office space to maximize household
utility.
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live and whether to work at a firm that allows WFH. If they choose to work
for a non-WFH firm, they then choose consumption, housing, and labor supply
to maximize utility given commute times and all wages and prices and subject
to budget and time constraints. If they choose to work for a WFH firm, they
choose consumption, housing, labor supply at the office, labor supply at home,
business capital at home and home office space to maximize utility given the
wage function, commute times, and all prices and subject to budget and time
constraints,

• non-WFH firms take all wages and prices as given and choose labor, business
capital, and office space to maximize profits,

• WFH firms take all prices and the wage function and its inputs for each type of
worker and location where the worker lives as given and choose business capital
at the office and office space to maximize profits,

• the total demand for housing inclusive of home office space in each location is
equal to the supply of housing in each location and the total demand for office
space is equal to the supply of office space, and

• aggregate quantities are consistent with the externalities affecting all wages
and commute times.

For each location and type of household, we compute the model solution by finding
the value of the ratio in equation (11) that is consistent with annual income and the
optimal choice of cnι and hnι; see Appendices C and D for details. We then use the
implications of equations (1) and (2) to identify the fraction of households of each type
that live in each location and the fraction of type 1 and 2 households that choose WFH
firms. Given all prices and wages, we compute aggregate demand for housing in each
location as the sum of demand for housing of types 3 and 4 and the sum of demand for
housing and home offices of types 1 and 2. We compute aggregate demand for office
space as the sum of demand for office space for all non-WFH firms and WFH firms.
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4 Estimation

4.1 Data

To estimate the model parameters, we use data from seven sources: 1) the 2018 GSS,
2) the 2017-2018 LJF (ATUS 2020 as compiled by Hofferth et al. (2020)), 3) the 2019 5-
year American Community Survey (ACS) as compiled by Ruggles et al. (2021) which
pools data collected in 2015-2019, 4) the 2019 American Housing Survey (AHS), 5)
office rents derived from RCA (2020), 6) residential listing prices per square foot by
county compiled by Realtor.com available via FRED at the Federal Reserve Bank of
St. Louis, and 7) the Dingel and Neiman (2020) occupation codes (ONET) classified by
telecommutable status combined with Census 2010 occupation classifications as our
ACS data contains only Census occupation codes.

4.2 Matching Model Concepts to Data

Before describing specific moments we use to estimate the model, we provide a de-
scription of empirical counterparts to the concepts in the model.

Workers. We conceive of agents in our model as full-time workers and restrict our
sample to these workers. We restrict our sample in the ACS to household heads
(relate == 1) who are working full-time (uhrswork >= 30&uhrswrk < 99), not living
in group quarters, who worked at least 40 weeks (wkswork >= 40) last year, and
who are 25 years of age or older. We also exclude households working in the armed
forces. We define a high-skill household as one where the household head has at least
a four-year college degree. A household is defined as working in a telecommutable
occupation when the household head works in an occupation that Dingel and Neiman
(2020) classify as permitting some telecommuting.9

9While we observe a small amount of WFH for workers whose occupations Dingel and Neiman
(2020) classify as not allowing remote work, we attribute this to occupational missclassification for
these workers given the careful work that Dingel and Neiman (2020) undertake in classifying oc-
cupations. See Mongey, Pilosopph, and Weinberg (forthcoming) for a discussion of the demographic
composition of workers in remote-capable occupations.
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Cities. We choose the cities with which to estimate the model as follows. We start
with the 30 largest US cities by population. We then keep all cities that are approxi-
mately monocentric and whose Core-Based Statistical Area (CBSA) definition spans
more than one county. We exclude the Los Angeles, Minneapolis-St. Paul, River-
side, and San Francisco CBSAs because they are not monocentric and the Las Vegas,
Phoenix, and San Diego CBSAs because each is located in only one county. Finally,
there is no Federal Information Processing Standards (FIPS) code in the 2015-2019
ACS data for the CBD county for Miami (Miami-Dade) or Denver (Denver).10 Our
final sample thus includes 21 cities.

Zones. We allow for two residential locations which we refer to hereafter as zones.
To match the zones to the data, we interpret Zone 1 as the same county as the CBD
and Zone 2 as all other counties in the CBSA. We focus on the county as the unit
of geography because it is the smallest unit of geography that we can consistently
observe in the ACS data.

4.3 Fixed Parameters

Table 3 summarizes our parameterization of the model. Existing studies inform us
of the values of several parameters of the model that are not the model’s focus. We
use evidence from Valentinyi and Herrendorf (2008) on the share of labor, real estate,
business equipment and software, and labor in production to set θb = 0.67, θs = 0.18,
and θk = 0.15.

ν measures how sensitive location choice is to variation in utility. In many models
of urban economics, utility has to be the same everywhere. This is what emerges as
ν →∞. When ν is finite, people are willing to live in a place that provides lower utility
on average because they get a good random draw of household-specific preferences enj
from living there. We set ν = 3.3 based on the estimates in Monte, Redding, and
Rossi-Hansberg (2018). In Sections 4.7 and 5.6, we examine the sensitivity of our
results to this parameter value.

We set α2 = α4 = 0.33 and α1 = α3 = 0.20 to roughly match the relative size
of housing of college- and non-college-educated workers in the 2019 AHS.11 These

10We identify the CBSA, county FIPS code, and state FIPS code using the variables met2013,
countyfip, and statefip in the IPUMS data.

11The average home sizes for non-college-educated and college-educated households are 1,582 and
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values of α bracket the Davis and Ortalo-Magné (2011) estimate of 0.24 for the median
expenditure share on rents for all renting households in the United States.12

Given our specification of preferences, leisure is a constant and is independent of
wage, location choice, and firm choice. We set the parameter ψ equal to 1.15 to gen-
erate a leisure share of total discretionary time in the year of 53.5%. This calculation
assumes 15 discretionary hours in the day, a nine-hour work day, and households
working five days per week and 50 weeks per year. Appendix A details how daily time
use translates into annual time use.

We measure the population shares, πι, directly from the ACS.

In our benchmark parameterization, we compute the quantity of space demanded
in each zone and in the CBD at specific rental prices that we calibrate from data. In
our counterfactual simulations, we either solve for new rental prices holding quanti-
ties of space in each zone and the CBD as fixed, or we solve for new quantities holding
rental prices fixed. We compute average annual office rents per square foot (psf) in
the CBD using data from RCA by multiplying the average transaction price psf for
office space in that city by the cap rate specific to that city.13 Consistent with the long-
term value of the rent-price ratio documented by Davis, Lehnert, and Martin (2008),
we apply a 5% cap rate to the median price per square foot for the residential prices
by county. We normalize the rental price of office space in the CBD rs = 1.0, giving us
rental prices for housing in Zones 1 and 2 of r1 = 0.81 and r2 = 0.47.

4.4 Parameters Estimated Outside the Model

While the existing literature informs us of the values of some parameters, we can
estimate other parameters unique to our model directly from the data. Below, we
describe the moments we target. Appendix E describes how we calculate the standard
errors.

2,025 square feet.
12Many studies find that a 1% increase in income results in an increase of much less than 1% in hous-

ing expenditure. See, for example, Rosen (1979), Glaeser, Kahn, and Rappaport (2008), and Rosenthal
(2014).

13The cap rate is pre-tax net operating income divided by price. In leases where most of the expenses
are paid by tenants, the cap rate is close to gross rents divided by price.
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Commuting Costs. We estimate the time costs of commuting, t1 and t2, using data
from the ACS on the average one-way commute time by workers commuting into Zone
1. Workers living in Zones 1 and 2 commuted an average of 25.7 and 47.7 minutes
each way.

We estimate the financial commuting cost parameters, τ1 and τ2, using information
from a special survey in the 2017 AHS. Our target financial commuting costs for Zones
1 and 2 are $2,226 and $5,565 per year for households working all days at the office.14

Productivity Parameters. To estimate Zι, we first estimate hourly wages for peo-
ple working full time by household type ι. We strip the ACS wage data of demograph-
ics by running Mincerian regressions of hourly wages on gender, age, age squared,
gender interacted with age and age squared, marital status, an indicator for the pres-
ence of children under age 5, county of residence fixed effects, and type fixed effects.
We then use the fitted values for a married man of age 40 with no children under age
5 for each household type ι.15

Given values of θk, θs, θb, rk, and rs and estimates of hourly wages by ι, we use
equations (15) and (12) to solve for Zι. Denote w̃ι as our estimate of hourly wages of
type ι households. Given an assumed 15 hours of discretionary time each day, we can
use the derivations in Appendix A to show wι = w̃ι · 15 · 365. Then the model implies
for all type 3 and 4 workers and type 1 and 2 workers at non-WFH firms

w̃ι · 15 · 365 = θb

(θk
rk

) θk
θb

(
θs
rs

) θs
θb

(Zι)
1
θb


Zι = const · (w̃ι)θb

14We assume that the distribution of financial commuting costs mimics the distribution of time com-
muting costs and use the financial commuting costs associated with the same percentile of time com-
muting costs that we observe for Zones 1 and 2 in the ACS, i.e., the percentiles of financial commuting
costs corresponding to percentiles of commute times of 26 and 48 minutes.

15See Gutiérrez-i-Puigarnau and van Ommeren (2010), Black, Kolesnikova, and Taylor (2014), and
Pabilonia and Vernon (2022) for discussions of the demographic differences in the relationship between
commuting time and work. Since we cannot identify workers at WFH firms in the ACS, we include all
workers to estimate wages.
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where the constant is equal to15 · 365 · θ−1b
(
θk
rk

)− θk
θb

(
θs
rs

)− θs
θb

θb .
Importance of Idiosyncratic Preferences for WFH Firm Choice. To estimate
1/ζ, note that equation (9) implies the following relationship of the difference in the
log probability of choosing a WFH firm and a non-WFH firm

log g1nι − log g0nι = ζ
[
X1
nι −X0

nι

]
.(16)

Now define net annual wage for non-WFH and WFH employees as

W0
nι =

(
w0
ι − τn

)
b0nι

W1
nι =

(
ωι
(
lbnι, l

h
nι, s

h
nι, k

h
nι

)
− τnlbnι − rnshnι − rkkhnι

)
.

The optimal choices for housing and consumption imply that equation (16) can be
written as

log g1nι − log g0nι = ζ
[
χι + logW1

nι − logW0
nι(17)

Holding location fixed, the above expression implies that ζ determines the elastic-
ity of firm choice with respect to annual net wage. We can use data from Table 5 of
Mas and Pallais (2017) to estimate this elasticity. In that table, the wage discount
at the 75th percentile is $0.20 and the wage discount at the 25th percentile is $2.45,
both off of a base of $17.50. If we compute equation (17) for each of these data points
and then evaluate the difference, we get

log (0.75/0.25)− log (0.25/0.75) = ζ

[
log

(
1− $0.20

$17.50

)
− log

(
1− $2.45

$17.50

)]
(18)

This gives ζ = 15.77 and 1/ζ = 0.0634, implying that people are willing to switch to a
non-WFH firm in response to a small increase in wages. Intuitively, we can see this
directly from Table 5 of Mas and Pallais (2017): 50% of the sample is willing to change
jobs when the WFH discount changes by only 13 percentage points.16

16Mas and Pallais (2017) hold fixed the non-pecuniary aspects of the WFH and non-WFH jobs such
that we can ignore possible changes to the parameter χι when computing the difference.
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4.5 Jointly Estimated Parameters

Moments Table 4 summarizes 10 additional moments we use to estimate the re-
maining 10 parameters of the model using method of moments. Based on our under-
standing of the model, we select moments of the data to be informative of the model’s
key parameters. These moments are:

1-4. The shares of each type of worker living in Zone 2,

5-6. The shares of type 1 and type 2 households working at WFH firms,

7-8. The shares of feasible days of WFH of all type 1 households in each of Zone 1
and Zone 2,

9. The share of days of WFH of all type 2 workers in all zones, and

10. The relative wage such that 60% of type 1 and type 2 workers choose a WFH
firm.

For moments 5 and 6, we set the share of households working at WFH firms equal to
(a) the share of workers in the ACS that mainly work from home, by type, multiplied
by (b) the ratio (total WFH workers / usually WFH workers) in the GSS, also by type.
This ratio is stable over time (see Section 2). For moments 7-9, we use data from the
LJF to determine the total share of days worked at home by zone. We assign workers
with a commute time of at least 15 minutes and less than or equal to 30 minutes to
Zone 1 and all other workers to Zone 2.17 After this sorting, we compute the total
share of days worked at home by type of worker and by zone.

Finally, to compute the value of moment 10, we use experimental evidence from
Mas and Pallais (2017) on workers’ willingness to pay (WTP) to work at a firm that
allows WFH. Mas and Pallais (2017) present the 25th percentile, mean, and 75th
percentile of the WTP to work at a WFH firm. We linearly interpolate the WTP
between the 25th and 75th percentiles to match the observed shares of all type 1 and
2 households working at WFH firms of 60%. This yields a relative wage of 95%.

17We sort respondents in the LJF into zones based on commute time because we cannot directly
identify the county of residence for most observations. We also exclude the small number of workers
in the LJF who report working from home five days per week since we do not have a reliable commute
time for these workers.
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Identification The 10 moments jointly identify the 10 parameters. We briefly de-
scribe the intuition for the identification below. Starting with the most straightfor-
ward parameters, we normalize a1ι = 0. Then, moments 1-4 identify the relative
amenities that Zone 2 (a2ι) provides to each type of worker. a2ι governs the model’s
predictions for population of type ι in Zone 2 all else equal; therefore, population
shares identify a2ι.

Next, patterns related to the intensive margins of WFH identifyAhι /Abι and ρ. From
equation (11), we can see that when there are no commuting costs, i.e., when tn =

τn = 0, the ratio of time spent at the office to time working from home is a function
of Ahι /Abι and ρ, given estimates of rs, rn, and θs. Since Ahι /Abι is fixed for each type,
as commuting costs and rental prices change, equation (11) shows that ρ determines
how the optimal allocation of time changes. The response of lbnι/lhnι to variation in
Ahι /A

b
ι , tn, τn, and rn identifies ρ. Given ρ, the level of lbnι/lhnι is determined by Ahι /A

b
ι ,

conditional on all other variables and parameters.

To identify the remaining parameters, we impose Ab1 = ZZ1 and Ab2 = ZZ2. Pat-
terns related to wages and the extensive margin then identify Z and χι. Given esti-
mates of Zι (from Section 4.4) and Ahι /A

b
ι , Z pins down the levels of Abι and therefore

Ahι . An increase in Z boosts the level of productivity and wages of WFH, which in turn
increases the percentage of workers that optimally choose to work for a WFH firm. An
increase in χι also increases the percentage of workers that optimally choose to work
for a WFH firm but does not change worker productivity or wages. Thus, the relative
wage of households that work from home determines Z. Given Z, the percentage of
workers optimally choosing to work for a WFH firm pins down χι.

Mapping this intuition to the data, moments 5, 6, and 10 are informative about
parameters related to the extensive margin: χ1, χ2, and Z. Moments 7-9 are a mix
of data from the intensive and extensive margins since they measure time worked
from home as a percentage of total available time for all households, not just WFH
households. Conditional on estimates of χ1, χ2, Z, and ζ, moments 7-9 are informative
about Ah1/Ab1 and Ah2/Ab2, which govern the model’s predictions for the average value of
the intensive margin, and about ρ, which governs the model’s predictions for how the
intensive margin varies with rents and commuting costs.
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4.6 Results

Our point estimates for Ah1/Ab1 and Ah2/A
b
2 are 0.365 and 0.348 with standard errors

of 0.14 and 0.13. Our estimate of ρ is 0.72 with a standard error of 0.1. The point
estimate of ρ implies an EOS between WFH and work at the office of 3.55. Using the
delta method, we calculate a 95% confidence interval on the EOS of 0.998 (essentially
Cobb-Douglas) to 6.105 confirming that WFH and work at the office are imperfect sub-
stitutes in production, consistent with the descriptive evidence in Section 2. While not
complements in the sense of having an EOS below 1, as the term complements is often
used with regard to preferences over two consumption goods, we use the term com-
plement to distinguish our findings regarding the production function from research
modeling WFH as a perfect substitute with work at the office (e.g., Delventhal, Kwon,
and Parkhomenko, 2022; Bick, Blandin, and Mertens, 2022; Brueckner, Kahn, and
Lin, forthcoming). Conditional on being at a WFH firm, workers are most productive
when they work occasionally at home given the complementarity between the two
types of work. Imperfect substitutability is also consistent with survey evidence. PwC
(2021) reports that most firms anticipate a hybrid work week post-pandemic rather
than many firms switching to becoming 100% remote. Figure 11 of Bick, Blandin, and
Mertens (2022) similarly illustrates that a much larger fraction of workers anticipate
doing some WFH than being entirely remote post-pandemic.

4.7 Sensitivity of Parameter Estimates to Value of ν

When we map the model to data, Zone 2 corresponds to a group of several counties.
However, we take our baseline value of ν from Monte, Redding, and Rossi-Hansberg
(2018) where the geographic unit is a single county. We therefore consider how our es-
timates would be affected by using a lower value of ν that corresponds to a larger geo-
graphic unit. Table 5 presents our parameter estimates when we use ν = 2, which is in
the range of estimates from Appendix Table A.17 of Fajgelbaum, Morales, Suárez Ser-
rato, and Zidar (2019). The estimates of the productivity parameters are extremely
similar to our benchmark estimation. The estimates of the amenity parameters, a2ι,
change more, but their change in values has little impact on our counterfactual sce-
narios.
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4.8 Parameters for Counterfactuals

The last panel of Table 3 presents the values for the parameters that we use only in
our counterfactuals. We do not use these parameters to estimate the model but set
them in order to compute moments in our counterfactual scenarios of the next section.
γ measures the elasticity of driving speed with respect to aggregate commuting miles.
We set γ = −0.15 based on the preferred estimates in Couture, Duranton, and Turner
(2018).18 δb governs the extent of agglomeration returns in production for high-skill
workers working in the CBD. We set this to 0.04 based on Davis, Fisher, and Whited
(2014).19 We set δn to 0.04 in the interest of symmetry. Section 5.4 uses our counter-
factuals to calculate δ1h and δ2h. In Section 5.4, we compute an upper bound for δn
based on the share of the overall increase in WFH productivity that can feasibly arise
from the network externality and compare the predictions of the model at that upper
bound as compared to δn = 0.04.

5 Counterfactuals

Our model is designed to explain how the economy will change in response to the im-
provement in WFH productivity during COVID. We thus size the technological change
such that the model-predicted number of WFH days quadruples immediately after the
pandemic relative to its pre-pandemic level. All of the change in WFH is driven by
a change in its productivity. The mechanism that generates the productivity change
need not be specified to study its consequences. However, because the pandemic lasted
only two years, we can size the adoption externality by treating the baseline levels of
technology, Ahι , as fixed. We do so after discussing our post-pandemic counterfactuals.

Our target of a fourfold increase in total WFH days for both type 1 and type 2
workers immediately post COVID is slightly below the fivefold increase predicted by
Barrero, Bloom, and Davis (2022). Barrero, Bloom, and Davis (2022) survey the sub-
set of households that report having some experience with WFH during the pandemic
so their survey corresponds with those in telecommutable occupations — our type 1

18The estimates in Couture, Duranton, and Turner (2018) assume that driving is the mode of trans-
portation. A different γ may prevail in more transit-dependent cities such as New York City.

19Our concept of an agglomeration externality in production corresponds to a city-level parameter
such that the Davis, Fisher, and Whited (2014) estimate is appropriate. See Rosenthal and Strange
(2003), Ahlfeldt, Redding, Sturm, and Wolf (2015), and Baum-Snow, Gendron-Carrier, and Pavan
(2021) for measures of more localized agglomeration economies.
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and type 2 households. Noting that Barrero, Bloom, and Davis (2021) report a diver-
gence between household and firm preferences for WFH, we conservatively target a
fourfold rather than fivefold increase since households may be optimistic about their
employers’ WFH plans and since the Barrero, Bloom, and Davis (2022) survey is a
household survey.

We consider three counterfactual experiments that bracket the possible changes
to city form and the use of space after the pandemic’s health-related impacts subside
and people can freely interact again. In all three counterfactuals, people can ad-
just where they live, how much they spend on housing, their labor supply, and their
non-housing consumption. Households that are in a telecommutable occupation also
choose their business equipment at home, their home-office space, and how much to
work in the CBD and at home. What varies across counterfactuals is the extent to
which aggregate quantities or prices of space, by zone, are allowed to vary from the
pre-pandemic baseline.

5.1 The COVID-19 Pandemic

Our simulation for the COVID-19 pandemic consists of forcing the possible days that
can be worked in the CBD for all households to only 40% of total days of work at the
office prior to the pandemic, consistent with the share of work done at home during
the pandemic reported by Barrero, Bloom, and Davis (2021). Households continue
to optimize over all other choice variables subject to this constraint. Appendix F
characterizes the model solution during pandemic counterfactuals. We hold the model
parameters fixed at their pre-pandemic levels during the COVID-19 counterfactual.

Column 2 of Table 6 shows how the pandemic affected the model economy at the
start of the COVID-19 pandemic. Consumption for workers who can work remotely
falls to about two-thirds of the pre-pandemic level. Type 3 and 4 workers are hurt
much more since they cannot work remotely — their consumption falls to less than
half of the pre-pandemic level. Because a larger fraction of high-skill workers can
work remotely and because remote work is more productive for them, income inequal-
ity rises.
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5.2 Immediately After the Pandemic

To begin our counterfactuals, we size the technological improvement required to achieve
the fourfold increase in WFH days for both type 1 and type 2 workers. In this first
post-COVID counterfactual, called SR in Tables 7 and 8, we hold fixed the supply of
office space in the CBD and the aggregate amount of available structures for use in
housing and WFH in Zones 1 and 2 (separately) at the baseline levels. We then search
for three market-clearing prices, rb, r1, and r2, such that the demand for space is equal
to the supply of space in each zone. We think of this as a short-run response in the
sense that populations can move and the demand for space can immediately change,
but the supply of space has not yet responded.

In the SR counterfactuals, Ahι /Abι increases from 0.365 to 0.666 (83%) for high-skill
workers and from 0.348 to 0.516 (48%) for low-skill workers. This enormous and sud-
den change in TFP for both worker types is inconsistent with the slow-moving trend
in the amount of WFH in Section 2, motivating our inclusion of an adoption exter-
nality in the model. The percentage change in relative TFP is greater for high-skill
workers because most of the increase in their WFH has to come along the intensive
margin given that 70% of them did some WFH prior to the pandemic. In contrast, the
model predicts a much greater change along the extensive margin for low-skill work-
ers: the share of type 2 workers choosing a WFH firm rises from 32% pre pandemic
to 65% post pandemic (Table 8).

Comparing columns 1 and 2 of Table 7 shows that, while incomes for both low-
and high-skill workers rise (rows 8 and 9), the increase is more pronounced for high-
skill workers. The difference is large enough to raise the ratio of high-skill to low-
skill income by 18%, from 1.59 to 1.87 (row 10). Not surprisingly, the majority of the
wage increases for both high-skill and low-skill households are in the occupations that
allow WFH. Because a much larger share of high-skill than low-skill workers work
in a telecommutable occupation, the average increase in wages is highest for high-
skill workers. There is a small increase in wages for types 3 and 4 in the short run
because the decline in office rents causes firms to rent more office space per worker,
which raises worker productivity at the office. This wage increase more than offsets
the slight decrease in agglomeration benefits for type 3 households arising from the
type 1 households working more from home.

Although high-skill workers work in the office less, the share of high-skill workers
living in Zone 2 in this counterfactual increases modestly (row 20) as the quantity of
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space has not yet had a chance to adjust. Relative to the pre-pandemic benchmark,
rent for office space in the CBD falls by a modest 8% (row 41). Residential rents rise
in both zones, with the increase larger in Zone 2 (29%, row 43) than in Zone 1 (17%,
row 42). The change in residential rents is driven by a large increase in demand for
home offices (rows 37 and 40); the quantity of housing that is not used for home offices
declines in both zones (rows 36 and 39) as a result of the increased demand for home
office space and the fixed supply of housing.

5.3 Long-Run Counterfactuals

Our two long-run counterfactuals allow the stock of space to adjust in contrast to
the SR counterfactual where rents do all of the adjusting. We assume that there is a
construction sector outside the model that collects all rents and constructs residential
units according to the following constant-elasticity supply equations:

logSLR BSH
n − logSBasen = ELR BSH

n

[
log rLR BSH

n − log rBasen

]
logSLRn − logSBasen = ELRn

[
log rLRn − log rBasen

]
where SLR BSH

n is the supply of space in zone n in the LR BSH counterfactual, SBasen

is the supply of space in zone n in the pre-COVID Baseline, rLR BSH
n and rBasen are the

prices of space in the LR BSH counterfactual and Baseline in zone n, and ELR BSH
n is

the elasticity of supply in zone n in the LR BSH counterfactual. Similarly, SLRn , rLRn ,
and ELRn are the supply of space, residential rents, and supply elasticity in the LR
counterfactual.

We set ELR BSH
n equal to the relevant zone elasticities from Baum-Snow and Han

(2022) and assume the stock of office space is subject to putty-clay dynamics such that
it cannot contract despite the decreased demand.20 This experiment recognizes that
depreciation rates on structures are sufficiently low that areas with a large decline in
the rental price of office space may not see a reduction in the total amount of rented
space for some time. Our LR counterfactual holds rents in the CBD and in both zones
fixed at their baseline levels and allows the supply of space in each zone to flexibly
accommodate any change in demand. That is, we set ELRn = ∞ and allow the supply

20Based on the recommendations of Baum-Snow and Han (2022), we use the Finite Mixture Model
(FMM) quadratic estimates (gamma11b units FMM). We use the 2011 predictions to get elasticities as
close as possible to the end of the pandemic and weight by the population in our sample. The resulting
elasticities are 0.229 and 0.263 for Zones 1 and 2.
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of office space to contract or expand as needed to keep rs at its pre-pandemic value.

Column 3 of Tables 7 and 8 shows the results of the LR BSH counterfactual. Office
rents remain at 92% of their pre-pandemic level (row 41) while residential rents mod-
erate somewhat as supply increases. Residential rents in Zones 1 and 2 remain 13%
and 23% above their pre-pandemic levels. Because of the moderation in residential
rents, the share of days worked from home rises slightly.

Once the quantity of space has adjusted, the share of days worked from home rises
even further, to 43% for type 1 and 22% for type 2, from 38% and 18% immediately
after the pandemic (rows 28 and 29). This occurs because once the supply of home-
office space in the residential zones has increased, labor productivity from WFH rises,
holding fixed the TFP of WFH. The increase in WFH slightly reduces the TFP from
working at the office because of a reduction in agglomeration benefits, reinforcing the
incentive for more WFH.

The demand for office space in the CBD declines by about 12% relative to its pre-
pandemic level (row 34). The demand for space for all uses increases by 17% in Zone
1 (row 35) and 32% in Zone 2. Housing for both types of workers increases from the
benchmark, as both types earn more income. However, workers in telecommutable
occupations occupy larger home offices in this environment, and this makes them
even more productive at home. With this in mind, it is useful to compare the SR
results, where the quantity of space in each zone is fixed and the price is flexible, to
the LR results, where the price is fixed and the quantity is flexible. In the SR, home
office space approximately quadruples from the pre-pandemic level, shown in rows 37
and 40. In the LR, space for home offices increases by about a factor of five relative to
the pre-pandemic level.

The predicted changes to the size of home offices in the SR and LR experiments
are large. The model forecasts these changes because the quantity of hours worked
from home quadruples and because labor at home and home office space are com-
plements in production with constant factor shares. Evidence in Stanton and Tiwari
(2021) supports our model’s predictions for expenditures on home office. Stanton and
Tiwari (2021) estimate that the expenditure share on housing for renting households
where at least one member is working remotely is significantly higher than the ex-
penditure share of otherwise similar households where no one works remotely. While
our predictions for the size of home offices may seem large, keep in mind that much of
the space in most office buildings is non-desk space such as conference rooms, lunch
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rooms, auditoriums, and even gyms, all of which is included in office space. Analo-
gously, when households work from home, they use the home’s bathroom, eat lunch
in the kitchen, and watch Netflix while working out in the den during breaks. For
workers that work from home, an accounting of costs would allocate some portion of
the rent on those spaces to the home office and not housing.

In all the experiments we have reported so far, consumption inequality (row 17)
increases by less than income inequality. In the post-COVID counterfactuals, average
wages rise for high-skill workers because these workers have become relatively more
productive. The increase in productivity arises from the increase in Ah1/A

b
1 and ex-

pansions in the amount of home equipment and the size of home offices. Workers are
compensated for the increase in their productivity, but some of the gains in income
directly offset the additional expenses of the equipment and home offices. To match
the model with data, we do not subtract expenditures on home equipment and offices
from labor income as typical survey questions measuring wage and salary income
do not ask respondents to net out expenditures on these items. Measured consump-
tion inequality does not increase as much as income inequality because rent for home
equipment and home office space reduces the income available for consumption for
type 1 and type 2 workers that choose WFH firms.

5.4 The Adoption and Network Externalities of WFH

We can combine equations (7) and (8) to show the sources of possible change to WFH
productivity:

Ahι = Ahι︸︷︷︸ × (Lmaxh )διh︸ ︷︷ ︸ × Lδnh︸︷︷︸
Exogenous Adoption Network

TFP Externality Externality

Growth in the productivity of WFH between any two points in time is the sum of
contributions from growth in exogenous TFP, growth in the adoption externality, and
growth in the network externality according to

∆ logAhι = ∆ logAhι + διh∆ logLmaxh + δn∆ logLh.(19)

Now consider the growth in WFH productivity between the pre-COVID baseline and
the SR counterfactual. Assuming Ahι did not change during this two year period, then
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growth in WFH productivity either arises from changes to the adoption or network
externalities, i.e.,

∆ logAhι = διh∆ logLmaxh + δn∆ logLh.

In our baseline specification, we set δn = 0.04 and ∆ logLh = log 4 given WFH
in the SR is set to equal to 4 times WFH in the pre-COVID baseline. This gives
δn∆ logLh = 0.0555. The log change in Ahι for type 1 households over this period was
0.593 and was 0.394 for type 2 households. Thus when δn = 0.04, for type 1 (type 2)
households the change in the density externality accounted for about 9.4% (14.1%)
of productivity growth and the change in the adoption externality accounted for the
other 90.6% (85.9%).

We can use estimates from the COVID simulations of the model to uncover the
implied value of διh for each type. Specifically, we compute the change in the log of
Lmaxh by comparing Lmaxh = 0.0966, the aggregate quantity of WFH in the COVID pan-
demic counterfactual, with Lh = 0.0170, the aggregate quantity in the pre-pandemic
baseline.21 This gives ∆ logLmaxh = 1.74, enabling us to calculate

type 1: δ1h = (0.593− 0.0555) /1.74 = 0.309

type 2: δ2h = (0.394− 0.0555) /1.74 = 0.195.

Finally, although there are no available estimates of δn, we can provide an upper
bound for δn that we denote as δ̄n. Referring to equation (19), if Ahι did not decline
during the pandemic, and if the adoption externality is always non-negative, then at
δn = δ̄n the change in the network externality accounts for all of the change in WFH
productivity. Thus, δ̄n satsifies

δ̄n = ∆ logAhι /∆ logLh.

The right-hand side of this equation is 0.427 for type 1 households and 0.284 for type
2 households. Since both types are subject to the same sized network externality,
it must be the case that δ̄n = 0.284; any larger value of δn implies a decline in Ah2
during the pandemic. At δn = 0.284, the change in the network externality accounts

21We compute total WFH labor supply in the pre-pandemic baseline as π1 ∗ 0.041 + π2 ∗ 0.018 (see
rows 26 and 27 of Table 8). Total WFH labor supply is computed similarly for the SR and COVID
counterfactuals.
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for all WFH productivity growth between the pre-COVID baseline and SR for type 2
households, but only accounts for about two thirds (0.394/0.593) of WFH productivity
growth for type 1 households. In other words, even when δn is at its upper bound, the
adoption externality plays an important role for type 1 workers, increasing their WFH
productivity by about 20 percent during the pandemic: δ1h∆ logLmaxh = ∆ logAh1 −
δ̄n∆ logLh = 0.593 − 0.394 = 0.20. Note that an implication of such a high value of δn
is that productivity of WFH for type 2 workers was highest during the pandemic and
declines substantially immediately post-pandemic.

We redo the model simulations at δn = δ̄n to understand the sensitivity of our main
results. Table 9 shows the results. In summary, the LR BSH results barely change
and the LR simulations change modestly. When housing supply is completely elastic,
the sizes of home offices and the predicted quantity of WFH rise a bit more when
δn = δ̄n compared to our baseline results when δn = 0.04. With larger home offices and
more WFH, the larger network externality increases the productivity of WFH and
therefore provides incentives for even more WFH.

5.5 A Hypothetical 2009 Pandemic

In Columns (4)-(6) of Table 6, we consider a counterfactual that corresponds to the
effect of the COVID pandemic at a time when WFH was less viable than in 2020. In
particular, we consider what would have happened had the pandemic hit in 2009, the
earliest year for which we have the ACS five-year sample. In this counterfactual, we
first reestimate the parameters of the model by changing the moments in Table 4 to
their 2009 counterparts. Because we do not observe the LJF for any years other than
the 2017-2018 wave, we scale the ratios of WFH in Zone 1 and Zone 2 by the ratio
of total days of WFH in the ATUS in 2008-2010 relative to 2017-2019. For type 1
workers, we use the ratio specific to college-educated workers, and for type 2 workers
we use the ratio specific to non-college educated workers. We then simulate the model
at these parameters assuming a pandemic occurs. As in the COVID-19 simulations,
during the pandemic we assume that each type of worker in each zone works in the
CBD at an amount equal to 40% of their pre-pandemic work-time there.

Comparing column (6) to column (3) of Table 6, we see that the decline in income
and consumption would have been worse for high-skill workers in telecommutable
occupations had the pandemic happened in 2009 instead of 2019. This occurs because
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the relative TFP of WFH for these workers is lower in 2009 than in 2019, consistent
with Figure 1 data showing that the quantity of WFH for high-skill workers was much
lower in 2009 than in 2019. The change is much smaller for type 2 workers because
they had such a small share of WFH both in 2019 and in 2009.

5.6 Robustness

5.6.1 Sensitivity to Agglomeration Economies in the CBD

Our benchmark parameterization sets δb = 0.04 based on the estimates in Davis,
Fisher, and Whited (2014). However, these estimates are based on data from entire
metropolitan areas. To the extent that agglomeration economies may be stronger
in a smaller location like a CBD, we compute counterfactuals after reestimating all
model parameters with δb set to a much higher value, 0.10. Table 10 presents these
results. Overall, the change in δb does not materially affect any of our main results.
The higher value of δb slightly reduces the skilled workers’ gains from the increase
in Ahι /A

b
ι , so their incomes rise less after the pandemic ends which moderates the

increase in income inequality. The lower productivity from being at the office also
reduces the demand for office space slightly, such that office rents fall by an additional
percentage point relative to our benchmark scenario.

5.6.2 Sensitivity to Low-Skill Households Being Immobile

Our benchmark parameterization sets ν = 3.3 for all workers, consistent with the
existing literature (e.g., Monte, Redding, and Rossi-Hansberg (2018)). Coven, Gupta,
and Yao (2022), however, document that low-skill workers did not move nearly as
much as high-skill workers during the pandemic. In Table 11, we therefore consider
a set of counterfactuals where we reestimate the parameters of the model after as-
suming that low-skill workers do not move in response to changes to economic fun-
damentals; we do this by setting Vnιj = anι + enιj for type 2 and type 4 workers (see
Equation (1)). Not surprisingly, the composition of residents in each zone changes
less in the counterfactual experiments with low-skill workers being immobile than in
the experiments with all workers being mobile. Prior to the pandemic, most low-skill
workers did not work from home and, in our baseline parameterization, some of these
workers moved to Zone 1 in the SR experiment. Thus, making low-skill workers im-
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mobile slightly reduces the demand for space in Zone 1 in the SR experiment which
moderates the predicted increase in rents in that zone.

5.7 Dynamics

We can also examine how rents evolve after the pandemic if we combine our model
with an assumption on the length of the adjustment period between the short run
and the long run. Given the very high cost of converting many office buildings to
residential uses, we view our LR BSH counterfactual as the most likely scenario for
the long run. Figure 3 presents our estimates of rents for office space in the CBD and
for housing in Zones 1 and 2 assuming the supply of residential space takes 10 years
to fully adjust. We assume the quantity of space in each zone increases by a constant
amount in each year of the adjustment period. In each counterfactual, we assume
that the economy is in steady state for the given level of housing supply.

The sequence of rents shown in Figure 3 allows us to compute the post-COVID
price of office buildings and residential space and compare them to pre-COVID levels.
To compute prices, we assume that households have perfect foresight about the path
of housing supply. We thus compute prices as the present discounted value of future
rents for each of the steady states computed in the ten-year adjustment period. As-
suming a 7% annual discount rate and that rent is paid in arrears, our simulation
in Figure 3 implies that the price of office space post COVID should be 92.2% of its
pre-COVID level. The price impacts for office space is insensitive to the discount rate:
assuming a discount rate of anywhere from 2% to 10% implies that, immediately post
COVID, prices are 92.1% to 92.2% of their pre-pandemic level. Assuming a 7% dis-
count rate, the prices of residential space in Zones 1 and 2 are 14% and 25% higher
than pre-pandemic levels. Note that our dynamic counterfactual predicts that resi-
dential rents fall after COVID ends as the supply of space expands, particularly in
Zone 2. This result is consistent with the findings of Gupta, Mittal, Peeters, and Van
Nieuwerburgh (2022a).

As predicted by our model, there was a substantial increase in home prices be-
tween the start of 2020 and the end of 2021 (see Figure 4). REIT pricing indicates
that apartment prices rose 13% over this time while single-family home prices rose
36%. While apartments and single-family homes are not a perfect mapping to our
Zone 1 and 2 residences, and the model abstracts from pandemic-related changes to
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the US labor force that may have raised construction costs, the model’s consistency
with current real estate price data provides confidence in its longer term predictions
regarding moments that cannot yet be measured (e.g., long-term income inequality).

6 Distinguishing Between Misallocation and Produc-
tivity Change

The pandemic forced a large number of workers to work from home. According to our
model, this caused a large increase in the relative productivity of WFH due to the
presence of an adoption externality. After the pandemic ends, we expect the quantity
of WFH to fall but still be four times greater than its pre-pandemic value. Our as-
sumption that WFH will decline once the pandemic ends is consistent with (a) firm
surveys of the expected amount of WFH once the pandemic ends and (b) our estimates
that the TFP of WFH is lower than that of working at the office, i.e., Ahι /Abι < 1. Of
course, given that households optimally allocate their time, the marginal day worked
at home is as productive as work at the office net of commuting costs (see Equation
(10)).

An alternative view is that employees would have been able to work productively
from home pre pandemic with the existing level of technology adoption, but something
in the economic environment other than the productivity of WFH constrained them
from doing so. Under this “misallocation” view, the increase in WFH that occurred
during the pandemic could be much more permanent than surveys such as Barrero,
Bloom, and Davis (2022) report. One articulation of the misallocation view, which is
consistent with our technology adoption narrative, is that employers were unaware
of the productivity of working from home until the pandemic forced a large number
of workers to attempt it, enabling the full potential of existing WFH technology to
be realized. We consider two ways to distinguish between other articulations of the
misallocation view and the shift in productivity that we propose.

6.1 Misallocation in the Model

In our first exercise, we conceptualize the misallocation view as the view that there
was no increase in the productivity of WFH over the course of the pandemic but,
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rather, it was already high and there was some shift in preferences over the pandemic.
To explore the implications of this hypothesis, we reestimate the model with all the
productivity parameters governing WFH (Āh1 , Āh2 , Z, and ρ) at their post-pandemic
values. That is, instead of using moments on the frequency of WFH to estimate these
parameters as we did in our baseline, we take the values of these parameters as given
by what we found to generate our SR counterfactual. We then reestimate the model
on a smaller set of moments to understand what the other parameters of the model
must be to generate the data we observed pre-pandemic. Specifically, we estimate the
six remaining parameters of the model, a2ι for ι = 1, . . . , 4 and χι for ι = 1, 2, using
pre-pandemic moments on the fraction of each type living in Zone 1 for ι = 1, . . . , 4

and the share of all work that is WFH for each type ι = 1, 2.22

Table 12 presents estimates of the preference parameters in this scenario and
compares them to our benchmark estimates. The main change is that the workers’
preferences for WFH firms significantly decline relative to the baseline estimates. In
particular, to match the pre-pandemic shares of WFH, χ1 and χ2 become negative,
implying that workers dislike being at a firm that allows WFH. These preferences
are inconsistent with the experimental findings of Mas and Pallais (2017) and He,
Neumark, and Weng (2021) that workers value the option to work from home. Fur-
ther, the surveys by Barrero, Bloom, and Davis (2021) indicate that employees would
prefer to work more from home than employers want them to, suggesting that house-
holds have a high, positive preference for being able to do some WFH. On balance, the
evidence is not consistent with employees disliking the option to work at a firm that
allows some WFH indicating that productivity change is a more plausible explanation
for the increase in WFH than a preference shift.

6.2 Implications of Misallocation and Productivity Change for
Office Prices

Another prediction of the misallocation view is that the low demand for office space
during the pandemic will persist into the future due to a much greater share of post-

22For ι = 1, 2 we compute the share of all work that is WFH as

∑
n

fnι

(
g1nιl

h
nι

g1nι (lhnι + lbnι) + (1− g1nι) b0nι

)
.

where the notation follows that from Section 3.
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pandemic WFH than we assume in our baseline counterfactual simulations. That is,
in this interpretation of the misallocation view, the demand for office space in the long
run is roughly the same as during the COVID-19 pandemic.

In our COVID-19 counterfactual, office rents fall to just 0.49 — less than half
their pre-pandemic level. If this is a permanent change, then the decline in the price
of office buildings should be large, roughly 50%. Even assuming that some office space
can be profitably converted to residential space despite the high costs of conversion,
the fall in the price of office space should be substantial. For comparison, our dynamic
exercise in Section 5.7 finds that the price of office space will fall by about 8%.23

We use data on changes in the price of office space from real estate investment
trusts (REITs) to distinguish between the productivity and misallocation views. Fig-
ure 4 presents changes in the price of REIT equity by property type (lined bars) and
the implied change in underlying asset values (solid bars) after adjusting for leverage
between January 1, 2020 and December 31, 2021 for office, apartments, and single-
family rental housing. The REIT data show that the implied decline in the value of
office buildings is less than 5%, which is closer to our counterfactual than the misal-
location view.24

While our model simplifies the office market by assuming that leases are just one
year, rather than long-term, evidence from newly signed commercial leases is consis-
tent with the magnitude of the rent declines it predicts. Table 1 of Rosenthal, Strange,
and Urrego (2022) reports that, for car-dependent cities, the change in median rent
per square foot on newly executed office leases is about 10%. For transit-dependent
cities, the decline at the median is 8%. While Gupta, Mittal, and Van Nieuwerburgh
(2022b) predict larger changes in office prices based on NYC leases executed through
2021, some of the change in prices they predict is due to changes in discount rates
rather than rents. Furthermore, NYC has a steeper rent gradient, longer commutes,
and a higher share of workers in remote-capable occupations than most US cities. Our
model predicts that, because of these three factors, NYC will have a more pronounced
decline in office prices than the US as a whole.

23We also considered an alternative COVID-19 counterfactual where there is no change in the
amount of work that can be done in the CBD for types 3 and 4, such that the office rent decline is
less dramatic. In this counterfactual, office rents fall to 75% of their pre-pandemic level.

24The data in Figure 4 are from the FTSE-NAREIT US price indices for office, apartments, and
single-family rental property. To compute the implied property price changes, we use Compustat data
on the leverage of REITs by property type in 2019.
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7 Conclusions

Expectations about how much time will be spent working from home as compared
to the office have permanently changed as a result of the improvement in the rela-
tive productivity of WFH. Surveys suggest that once the pandemic subsides, work-
ers will approximately quadruple their time spent working from home relative to
pre-pandemic levels. Both descriptive evidence and our estimates of the elasticity of
substitution imply that WFH is a complement to work at the office. Simulations of
our model suggest that these changes will markedly reduce office rents, significantly
increase the quantity of housing in the suburbs, and widen income inequality.

While our model has a rich production structure, we abstract from certain impor-
tant details that may be fruitful directions for future research. Although we capture
heterogeneity in WFH productivity by occupation and by skill level, there are likely
important demographic differences in both the preference for WFH and its produc-
tivity that our model abstracts from. Additionally, all work at the office occurs in the
CBD in our model. It seems plausible that both the technological changes we doc-
ument and the change in urban form implied by our model increase the frequency
of commutes to work locations outside of the CBD. Finally, our estimation approach
aggregates data from across the entire United States based on our model of a single
monocentric city. This approach ignores heterogeneity across cities in the composition
of the labor force (Althoff, Eckert, Ganapati, and Walsh, 2022) and in rent gradients
as well as how WFH may affect flows of households and firms across cities.
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Table 1: Frequency of WFH by Demographics and Definition

(1) (2) (3) (4)
ATUS LJF

Only WFH Only WFH
Group Any WFH Only WFH Full Days Full Days
All 23.7 9.9 4.9 3.4

Full time 23.3 9.7 5.1 3.5
Part time 24.8 9.6 3.7 3.0

Male 22.3 8.7 4.2 3.2
Male, full time 22.4 8.6 4.3 3.3
Male, part time 20.7 7.2 3.0 2.5

Female 25.4 11.3 5.8 3.7
Female, full time 24.7 11.2 6.2 3.8
Female, part time 27.4 11.1 4.1 3.3

Holds one job 22.4 9.4 4.7 3.3
Multiple jobs 33.6 12.2 6.6 4.4

Education groups (age 25+ only):
No bachelor’s degree 15.9 5.6 3.0 1.8
High school dregree or less 13.0 3.8 1.9 1.2
High school dregree 11.8 2.9 0.8 0.9
High school dropout 13.3 4.0 2.2 1.3
Some college 19.9 8.0 4.5 2.6
Bachelor’s degree or higher 37.3 16.8 8.6 6.4
Bachelor’s degree only 33.3 14.4 7.3 5.8
Advanced degree 43.0 20.3 10.4 7.3

Notes: 1) Columns (1)-(3) report data from the 2017-2019 American Time Use Survey (ATUS). 2)
Column (4) reports data from the 2017-2018 Leave and Job Flexibility Module (LJF) of the ATUS.
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Table 2: Intensity of WFH in the GSS

Frequency of WFH 2010 2014 2018
Never 58% 60% 61%
A few times a year 9% 8% 7%
About once a month 7% 5% 6%
About once a week 8% 7% 8%
More than once a week 13% 13% 11%
Worker works mainly at home 6% 6% 7%
Share of workers that WFH that work mainly at home 14% 15% 18%

Notes: GSS asks respondents “[H]ow often do you work at home as part of your job?”
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Table 3: Model Parameterization

Parameter Description Determined Value Std. Error
θb Labor share in production Fixed 0.67
θk Structures share in production Fixed 0.18
θs Business equipment share in production Fixed 0.15
ν Importance of deterministic utility for n Fixed 3.3
α1 Housing exp. share for type 1 Fixed 0.20
α2 Housing exp. share for type 2 Fixed 0.33
α3 Housing exp. share for type 3 Fixed 0.20
α4 Housing exp. share for type 4 Fixed 0.33
ψ Pref. for leisure Fixed 1.15
T Daily discretionary hours available for work Fixed 15
b̂ Hours worked per working day Fixed 9
π1 Share of workers of type 1 Fixed 0.34
π2 Share of workers of type 2 Fixed 0.17
π3 Share of workers of type 3 Fixed 0.12
π4 Share of workers of type 4 Fixed 0.37
rb Office rent psf in CBD Normalized 1.00
r1 Residential rent psf in Zone 1 Fixed 0.81
r2 Residential rent psf in Zone 2 Fixed 0.47
t1 Distance from Zone 1 to CBD Estimated 0.0953 0.0001
t2 Distance from Zone 2 to CBD Estimated 0.1766 0.0003
τ1 Financial commuting cost from Zone 1 to CBD Estimated 5,417 270
τ2 Financial commuting cost from Zone 2 to CBD Estimated 13,542 518
Z1 TFP of non-WFH firm hiring type 1 workers Estimated 10,493 4
Z2 TFP of non-WFH firm hiring type 2 workers Estimated 8,305 5
Z3 TFP of firm hiring type 3 workers Estimated 9,249 6
Z4 TFP of firm hiring type 4 workers Estimated 6,900 5
1
ζ

Importance of deterministic utility for κ Estimated 0.0634 0.0198
Z TFP of work at office for WFH firm (Abι = ZZι for ι = 1, 2) Jointly Est. 0.890 0.029
a21 Amenities in Zone 2 for type 1 worker Jointly Est. 0.149 0.003
a22 Amenities in Zone 2 for type 2 worker Jointly Est. 0.146 0.004
a23 Amenities in Zone 2 for type 3 worker Jointly Est. 0.191 0.004
a24 Amenities in Zone 2 for type 4 worker Jointly Est. 0.132 0.004
χ1 Pref. for WFH firm for type 1 Jointly Est. 0.157 0.035
χ2 Pref. for WFH firm for type 2 Jointly Est. 0.063 0.038
ρ EOS between WFH and work at the office = 1

1−ρ Jointly Est. 0.718 0.103
Ah1
Ab1

Relative productivity of WFH for type 1 at a WFH firm Jointly Est. 0.365 0.141
Ah2
Ab2

Relative productivity of WFH for type 2 at a WFH firm Jointly Est. 0.348 0.130
Parameters only used in or determined by counterfactuals:
δb Agglomeration externality Fixed 0.04
δn Network externality Fixed 0.04
Z̄1 Base level of TFP for type 1 at non-WFH firm Fixed 11,251
Z̄3 Base level of TFP for type 3 at non-WFH firm Fixed 9,918
Āb1 Base level of TFP for type 1 at WFH firm Fixed 10,010
γ Congestion externality Fixed -0.15
d1 Distance from Zone 1 to CBD Fixed 12.9
d2 Distance from Zone 2 to CBD Fixed 23.8
S̄ Commuting speed parameter Fixed 40.8
δ1h Adoption externality for type 1 Fixed 0.309
δ2h Adoption externality for type 2 Fixed 0.195

Notes: A type 1 worker is a high-skill household in a telecommutable occupation. A type 2 worker is a
low-skill household in a telecommutable occupation. A type 3 worker is a high-skill household in a
non-telecommutable occupation. A type 4 worker is a low-skill household in a non-telecommutable
occupation. All parameters correspond to an annual frequency; see Appendix A for how T maps into
an annual frequency and how τ1 and τ2 map into annual pecuniary commuting costs of $2,226 and
$5,565.
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Table 4: Moments Used in Method of Moments Estimation

Moment Value Std. Error Source
Share of type 1 workers living in Zone 2 0.639 0.001 ACS
Share of type 2 workers living in Zone 2 0.672 0.001 ACS
Share of type 3 workers living in Zone 2 0.653 0.002 ACS
Share of type 4 workers living in Zone 2 0.645 0.001 ACS
Share of type 1 working at WFH firms, i.e., P(WFH=1—iota=1) 0.697 0.001 ACS & GSS 2018 (for scaling ACS WFH)
Share of type 2 working at WFH firms, i.e., P(WFH=1—iota=2) 0.322 0.001 ACS & GSS 2018 (for scaling ACS WFH)
Type 1 living in Zone 1 share of days WFH 0.066 0.007 LJF
Type 1 living in Zone 2 share of days WFH 0.119 0.011 LJF
Type 2 living in all zones share of days WFH 0.037 0.007 LJF
Relative wage such that 60% of Type 1 and 2 population chooses WFH firm 0.949 0.029 Interpolation of Mas and Pallais (2017)

Notes: A type 1 worker is a high-skill household in a telecommutable occupation. A type 2 worker is a low-skill household in a
telecommutable occupation. A type 3 worker is a high-skill household in a non-telecommutable occupation. A type 4 worker is a low-skill
household in a non-telecommutable occupation.
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Table 5: Sensitivity of Parameter Estimates to ν = 2

Benchmark ν = 2
Point Estimate Std. Error Point Estimate Std. Error

Z 0.890 0.029 0.890 0.029
a21 0.149 0.003 0.262 0.004
a22 0.146 0.004 0.287 0.005
a23 0.191 0.004 0.315 0.005
a24 0.132 0.004 0.249 0.005
χ1 0.157 0.035 0.157 0.035
χ2 0.063 0.038 0.063 0.038
ρ 0.718 0.103 0.718 0.103
Ah

1

Ab
1

0.365 0.141 0.365 0.141
Ah

2

Ab
2

0.348 0.130 0.348 0.130

Notes: 1) Our benchmark estimation in Table 3 sets ν = 3.3. 2) ν controls the strength of households’
idiosyncratic preferences for a particular zone.
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Table 6: Pandemic Counterfactuals

COVID-19 Pandemic Hypothetical 2009 Pandemic
Pre-COVID COVID Start Ratio Pre-COVID COVID Start Ratio

(1) (2) (3) (4) (5) (6)

Technology:
Ah

1

Ab
1

0.365 0.406 0.289 0.326
Ah

2

Ab
2

0.348 0.373 0.306 0.332
Incomes:
Type 1 avg. ann. income per worker $ 108,918 $ 88,193 81.0% $ 109,444 $ 80,600 73.6%
Type 2 avg. ann. income per worker $ 77,794 $ 59,696 76.7% $ 78,508 $ 58,737 74.8%
Type 3 avg. ann. income per worker $ 93,135 $ 42,664 45.8% $ 93,065 $ 42,753 45.9%
Type 4 avg. ann. income per worker $ 60,176 $ 29,181 48.5% $ 60,168 $ 29,278 48.7%
High-skill avg. ann. income per worker $ 104,801 $ 76,315 72.8% $ 105,171 $ 70,727 67.2%
Low-skill avg. ann. income per worker $ 65,722 $ 38,788 59.0% $ 65,941 $ 38,552 58.5%
Consumption:
Type 1 avg. non-housing consumption $ 80,706 $ 58,968 73.1% $ 82,252 $ 55,081 67.0%
Type 2 avg. non-housing consumption $ 48,474 $ 33,725 69.6% $ 49,092 $ 33,505 68.2%
Type 3 avg. non-housing consumption $ 71,074 $ 32,769 46.1% $ 70,992 $ 32,830 46.2%
Type 4 avg. non-housing consumption $ 37,457 $ 18,423 49.2% $ 37,448 $ 18,485 49.4%
High-skill avg. non-housing consumption $ 78,193 $ 52,133 66.7% $ 79,314 $ 49,277 62.1%
Low-skill avg. non-housing consumption $ 40,925 $ 23,240 56.8% $ 41,114 $ 23,214 56.5%

Notes: 1) In our pandemic counterfactuals, we keep Āh1 and Āh2 fixed at the pre-pandemic level and force the amount of labor that can be
worked at the office to 40% of the pre-pandemic level.
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Table 7: Model Prediction for Distribution of Incomes and Population

Pre-COVID Post-COVID Scenarios
Baseline SR LR BSH LR

Row (1) (2) (3) (4)
Technology:

(1) Ah
1

Ab
1

0.365 0.666 0.667 0.671

(2) Ah
2

Ab
2

0.348 0.516 0.517 0.519
(3) Ab1 9335 9249 9247 9231

Incomes:
(4) Type 1 avg. ann. income per worker $ 108,918 $ 141,534 $ 142,440 $ 145,185
(5) Type 2 avg. ann. income per worker $ 77,794 $ 85,099 $ 85,429 $ 85,702
(6) Type 3 avg. ann. income per worker $ 93,135 $ 94,165 $ 94,175 $ 91,598
(7) Type 4 avg. ann. income per worker $ 60,176 $ 61,726 $ 61,748 $ 60,176
(8) High-skill avg. ann. income per worker $ 104,801 $ 129,176 $ 129,849 $ 131,206
(9) Low-skill avg. ann. income per worker $ 65,722 $ 69,084 $ 69,203 $ 68,212
(10) Ratio of high-skill to low-skill Income 1.59 1.87 1.88 1.92

Consumption:
(11) Type 1 avg. non-housing consumption $ 80,706 $ 94,632 $ 95,053 $ 95,482
(12) Type 2 avg. non-housing consumption $ 48,474 $ 50,744 $ 50,841 $ 50,174
(13) Type 3 avg. non-housing consumption $ 71,074 $ 71,921 $ 71,925 $ 69,846
(14) Type 4 avg. non-housing consumption $ 37,457 $ 38,533 $ 38,542 $ 37,457
(15) High-skill avg. non-housing consumption $ 78,193 $ 88,707 $ 89,020 $ 88,794
(16) Low-skill avg. non-housing consumption $ 40,925 $ 42,377 $ 42,414 $ 41,461
(17) Ratio of high-skill to low-skill avg. consumption 1.91 2.09 2.10 2.14

Population Location:
(18) Total high-skill 46.0% 46.0% 46.0% 46.0%
(19) Living in Zone 1 35.7% 33.8% 33.6% 31.6%
(20) Living in Zone 2 64.3% 66.2% 66.4% 68.4%
(21) Total low-skill 54.0% 54.0% 54.0% 54.0%
(22) Living in Zone 1 34.6% 36.2% 35.9% 33.8%
(23) Living in Zone 2 65.4% 63.8% 64.1% 66.2%

Notes: 1) We parameterize the model to the pre-COVID world. 2) In columns (2)-(4), we increase Ah1/Ab1 and Ah2/Ab2 to the levels required to
increase the number of days in the year worked from home fourfold. 3) We hold the supply of space fixed at the pre-COVID baseline in the
SR counterfactual shown in column (2). In the LR BSH counterfactual shown in column (3), we adjust the supply of residential space
consistent with the elasticities in Baum-Snow and Han (2022) and keep the stock of office space fixed at its pre-pandemic level. In the LR
counterfactual shown in column (4), we adjust the supply of both residential and office space such that rents are equal to their pre-COVID
benchmark in column (1).
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Table 8: Model Predictions for Work Location, Space, and Rents

Pre-COVID Post-COVID Scenarios
Baseline SR LR BSH LR

Row (1) (2) (3) (4)
Labor supply:

(24) Type 1 0.411 0.427 0.428 0.429
(25) Type 2 0.407 0.416 0.416 0.417

Labor Supply of WFH:
(26) Type 1 0.041 0.164 0.166 0.184
(27) Type 2 0.018 0.073 0.075 0.093

Days WFH to Total Days Worked:
(28) Type 1 0.099 0.383 0.388 0.428
(29) Type 2 0.045 0.176 0.181 0.224

Extensive Margin of WFH:
(30) Share of type 1 choosing WFH firm 0.697 0.974 0.976 0.985
(31) Share ot type 2 choosing WFH firm 0.322 0.646 0.656 0.728

Intensive Margin of WFH:
(32) Days worked WFH to total days for type 1 at WFH firm 0.140 0.390 0.400 0.430
(33) Days worked WFH to total days for type 2 at WFH firm 0.140 0.270 0.270 0.310

Demand for Space:
(34) Office space per worker in CBD 21,150 21,150 21,150 18,664
(35) Total space per household in Zone 1 27,109 27,124 28,132 31,679
(36) Housing per household in Zone 1 26,305 23,661 24,493 27,203
(37) Home office per household in Zone 1 804 3,462 3,640 4,476
(38) Total space per household in Zone 2 42,830 42,818 45,015 56,392
(39) Housing per household in Zone 2 40,644 34,700 36,355 44,362
(40) Home office per household in Zone 2 2,186 8,117 8,660 12,029

Rent per Unit of Space:
(41) CBD 1.000 0.923 0.921 1.000
(42) Zone 1 0.810 0.948 0.917 0.810
(43) Zone 2 0.470 0.604 0.578 0.470

Notes: 1) Labor supply is the fraction of total discretionary time spent working. 2) See notes to Table 7.
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Table 9: Sensitivity to Greater Network Economies in WFH

(1) (2) (3) (4)
Pre-COVID Post-COVID Scenarios

Baseline SR LR BSH LR
A. Rents

δn = 0.04
CBD 1.00 0.92 0.92 1.00
Zone 1 0.81 0.95 0.92 0.81
Zone 2 0.47 0.60 0.58 0.47

δn = 0.28
CBD 1.00 0.92 0.92 1.00
Zone 1 0.81 0.95 0.92 0.81
Zone 2 0.47 0.60 0.58 0.47
B. Incomes

δn = 0.04
High-skill avg. income $ 104,801 $ 129,176 $ 129,849 $ 131,206
Low-skill avg. income $ 65,722 $ 69,084 $ 69,203 $ 68,212
High-skill/low-skill avg. income 1.59 1.87 1.88 1.92

δn = 0.28
High-skill avg. income $ 104,801 $ 129,176 $ 130,533 $ 138,061
Low-skill avg. income $ 65,722 $ 69,084 $ 69,332 $ 69,455
High-skill/low-skill avg. income 1.59 1.87 1.88 1.99
C. Population Location

δn = 0.04
Share of high-skill living in Zone 1 35.7% 33.8% 33.6% 31.6%
Share of low-skill living in Zone 1 34.6% 36.2% 35.9% 33.8%

δn = 0.28
Share of high-skill living in Zone 1 35.7% 33.8% 33.5% 31.0%
Share of low-skill living in Zone 1 34.6% 36.2% 35.9% 33.5%

Notes: 1) In our benchmark specification, we set δn = 0.04. 2)δn = 0.28 is an upper bound for the
network externality.
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Table 10: Sensitivity to Greater Agglomeration Economies

(1) (2) (3) (4)
Pre-COVID Post-COVID Scenarios

Baseline SR LR BSH LR
A. Rents

δb = 0.04
CBD 1.00 0.92 0.92 1.00
Zone 1 0.81 0.95 0.92 0.81
Zone 2 0.47 0.60 0.58 0.47

δb = 0.10
CBD 1.00 0.92 0.91 1.00
Zone 1 0.81 0.94 0.91 0.81
Zone 2 0.47 0.60 0.57 0.47
B. Incomes

δb = 0.04
High-skill avg. income $ 104,801 $ 129,176 $ 129,849 $ 131,206
Low-skill avg. income $ 65,722 $ 69,084 $ 69,203 $ 68,212
High-skill/low-skill avg. income 1.59 1.87 1.88 1.92

δb = 0.10
High-skill avg. income $ 104,801 $ 126,775 $ 127,379 $ 128,151
Low-skill avg. income $ 65,722 $ 69,244 $ 69,362 $ 68,214
High-skill/low-skill avg. income 1.59 1.83 1.84 1.88
C. Population Location

δb = 0.04
Share of high-skill living in Zone 1 35.7% 33.8% 33.6% 31.6%
Share of low-skill living in Zone 1 34.6% 36.2% 35.9% 33.8%

δb = 0.10
Share of high-skill living in Zone 1 35.7% 33.8% 33.6% 31.6%
Share of low-skill living in Zone 1 34.6% 36.2% 35.9% 33.8%
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Table 11: Sensitivity to Immobility for Low-Skill Workers

(1) (2) (3) (4)
Pre-COVID Post-COVID Scenarios

Baseline SR LR BSH LR
A. Rents

ν = 3.3
CBD 1.00 0.92 0.92 1.00
Zone 1 0.81 0.95 0.92 0.81
Zone 2 0.47 0.60 0.58 0.47

ν2 = ν4 = 0
CBD 1.00 0.92 0.92 1.00
Zone 1 0.81 0.94 0.91 0.81
Zone 2 0.47 0.61 0.58 0.47
B. Incomes

ν = 3.3
High-skill avg. income $ 104,801 $ 129,176 $ 129,849 $ 131,206
Low-skill avg. income $ 65,722 $ 69,084 $ 69,203 $ 68,212
High-skill/low-skill avg. income 1.59 1.87 1.88 1.92

ν2 = ν4 = 0
High-skill avg. income $ 104,801 $ 129,214 $ 129,890 $ 131,248
Low-skill avg. income $ 65,722 $ 69,013 $ 69,143 $ 68,204
High-skill/low-skill avg. income 1.59 1.87 1.88 1.92
C. Population Location

ν = 3.3
Share of high-skill living in Zone 1 35.7% 33.8% 33.6% 31.6%
Share of low-skill living in Zone 1 34.6% 36.2% 35.9% 33.8%

ν2 = ν4 = 0
Share of high-skill living in Zone 1 35.7% 34.2% 33.8% 31.6%
Share of low-skill living in Zone 1 34.6% 34.6% 34.6% 34.6%

Notes: 1) In our benchmark specification, we set ν = 3.3 for all worker types. 2) ν2 = ν4 =
counterfactuals correspond to setting ν = 0 for type 2 and type 4 workers and keeping ν = 3.3 for type
1 and type 3 workers.
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Table 12: Misallocation Parameter Estimates

Parameter Value Benchmark Misallocation
Z 0.890 0.890
a21 0.149 0.150
a22 0.146 0.144
a23 0.191 0.191
a24 0.132 0.131
χ1 0.157 -0.160
χ2 0.063 -0.075

Notes: 1) The productivity parameters in this exercise are held fixed at their post-pandemic values, 2)
Moments used to estimate the model are the share of each of the four types of workers living in Zone
2, the share of days of WFH done by type 1, and the share of days of WFH done by type 2.
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Figure 1: Fraction of All Days with More than Four Hours of Work Performed Only
at Home, 2003-2019
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Notes: All data from American Time Use Survey (ATUS).
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Figure 2: Intensity of WFH Over Time
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Notes: 1) GSS data. 2) Survey asks respondents “How often do you work at home as part of your job?”
3) Error bands are 95% confidence intervals. 4) Figure extends Figure 1 of Mas and Pallais (2020).
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Figure 3: Model-Implied Rental Prices

Notes: This figure shows the rental price per unit of office space and residential housing in each year
starting pre-COVID and ending with the LR BSH experiment assuming the supply of office space
does not adjust and the stock of residential space expands to its LR value based on the Baum-Snow
and Han (2022) elasticities linearly over a 10-year adjustment period.
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Figure 4: Change in REIT Prices from January 1, 2020 to December 31, 2021

Notes: FTSE-NAREIT price index series. Property price changes are calculated assuming 2019 REIT
leverage levels by property type.
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A Explaining the Budget and Time Constraints

A.1 Time constraint, no WFH

Suppose a worker can choose the number of days she goes to work but not the number
of hours she spends at work on a given day. On a day the person goes to work, hours
of work are fixed at b̂ and the amount of leisure is determined by hours commuting t̂

ˆ̀(work=1) = T − b̂− t̂.

On a day the worker does not work, hours of leisure is the time endowment,

ˆ̀(work=0) = T .

Denote η as the number of days the worker chooses to go to work in the year. Hours
of leisure in the year is

η
(
T − b̂− t̂

)
+ (365− η) T = 365 ∗ T −

(
b̂+ t̂

)
η.

Define t = t̂/b̂. Then hours of leisure in the year is

365 ∗ T − (1 + t) ηb̂.

Leisure as a percentage of the total time endowment (of hours) in a year is

1− (1 + t)

[
η

365

b̂

T

]
.

Now replace the term in brackets with b defined as

b =
η ∗ b̂

365 ∗ T
(A.1)

such that leisure can be written as

1− (1 + t) b.

As an example, set b̂ = 9 and T = 15. Then b̂/(365 ∗ T ) = 0.001644 such that b is a
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discrete choice with 365 evenly spaced values with range of 0.001644, 0.003288, . . . , 0.6.
We abstract from the discreteness of b and allow it to be a continuous choice ranging
from 0 to 0.6. Whatever the value of b, it can be mapped to days worked using equation
(A.1) such that if b = 0.411 then η = 250 days, implying people do not work for 115
days during the year (=52 weekends and 11 other vacation days). Suppose a one-way
commute is 30 minutes, such that (in hours) t̂ = 1 and t̂/b̂ = 1/9 = 0.1111. Then leisure
as a percentage of total time in the year is 1− 1.1111 ∗ 0.411 = 0.543.

A.2 Budget constraint, no WFH

Denote ŵ as the daily wage paid for b̂ hours of work and let τ̂ denote the financial cost
of commuting both ways, such that daily net pay is ŵ − τ̂ , and a person that works
η days per year takes home η [ŵ − τ̂ ]. Now use equation (A.1) to replace η with b, so
annual net wage can be re-expressed as a fraction of total available time, the daily
gross wage, and the daily gross commute cost(

b ∗ 365 ∗ T
b̂

)
[ŵ − τ̂ ] .(A.2)

If we define w = ŵ (365 ∗ T ) /b̂ and τ = τ̂ (365 ∗ T ) /b̂, then this can be written as
b [w − τ ].

Continuing with the previous example, suppose ŵ = 315 ($315 per day wage and
salary), τ̂ = 9 ($9 per day in financial commute costs), T = 15, and b̂ = 9 as before.
Then we would set w = $191, 625 and τ = $5, 475. At a value of b = 0.411, gross take-
home pay would be $78,758 and total financial commuting costs would be $2,250 such
that take-home pay net of commuting costs would be $76,508 per year.

A.3 Time and budget constraints, WFH option

Time Constraint: Denote ηb as the number of days a worker goes to the office and ηh

as the number of days a worker works from home. On a day the worker goes to the
office, hours spent commuting are t̂ that day. There is no commute to work at home.
At either the office or at home, hours of work in a day are fixed at b̂. This gives hours
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of leisure in the year of

ηb
(
T − b̂− t̂

)
+ ηh

(
T − b̂

)
+
(
365− ηb − ηh

)
T = 365 ∗ T −

(
b̂+ t̂

)
ηb − b̂ηh.

Define t = t̂/b̂ and divide by the total time endowment of hours in a year to express
leisure as a percentage of the total yearly time endowment, i.e.,

1− (1 + t)

[
ηb

365

b̂

T

]
−

[
ηh

365

b̂

T

]
.

Now define lb and lh as

lb =
ηb

365

b̂

T
lh =

ηh

365

b̂

T
(A.3)

such that leisure as a percent of total discretionary hours in a year can be written as

1− (1 + t) lb − lh.

Budget Constraint: Define ŵ as the average daily wage paid for b̂ hours of work
at the office on ηb days and b̂ hours of work done at home on ηh days, assuming a
home office size of sh and business equipment at home of kh. Keep in mind that ŵ is a
function of these inputs; we temporarily suppress the function notation. Assume one
unit of home office space costs r to rent each year and one unit of home equipment
costs rk to rent each year. The cost of commuting each day to work is τ̂ . The total pay
for the year net of commuting, home equipment, and office expenses is ηb [ŵ − τ̂ ] +

ηhŵ − rkkh − rsh. Now use equation (A.3) to replace ηb and ηh to yield(
lb ∗ 365 ∗ T

b̂

)
[ŵ − τ̂ ] +

(
lh ∗ 365 ∗ T

b̂

)
ŵ − rkkh − rsh.

If we define

w =
(

365 ∗ T /b̂
)
ŵ and τ =

(
365 ∗ T /b̂

)
τ̂

then total pay net of expenditures on home offices and commuting can be written as

w
(
lb + lh

)
− τ lb − rkkh − rsh.
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Now revisiting the fact that w is a function of lb, lh, sh, and kh, in the body of the text
we write

ω
(
lb, lh, sh, kh

)
− τ lb − rkkh − rsh.

B Households with Home Production

Consider a slightly different framework where households have utility over market
consumption cm, non-market consumption produced at home (e.g., meals, laundry) cn,
and leisure ` of the form

a0 ln cm + a1 ln cn + a2 ln `

where we have omitted type and location subscripts to save on notation. Non-market
consumption is produced as a Cobb-Douglas aggregate of housing h and time spent
working at non-market consumption ln according to

cn = Anhθn (ln)1−θn

where θn is the share of home-produced consumption attributable to the housing in-
put. Utility can be rewritten as

a0 ln cm + [a1 lnAn + a1θn lnh+ a1 (1− θn) ln ln] + a2 ln `.(A.4)

Notice that this utility function is nearly identical to what we had before, with some
terms and coefficients relabeled

a1 lnAn︸ ︷︷ ︸ + a0 ln cm︸ ︷︷ ︸ + a1θn lnh︸ ︷︷ ︸ + a2 ln `︸ ︷︷ ︸ + a1 (1− θn) ln ln︸ ︷︷ ︸ .
A + B + C + D + E

Terms A-D have a direct mapping to the model without production of non-market
consumption: A is equivalent to a (amenities), suggesting amenities has the interpre-
tation of scaled TFP of production of non-market consumption, the coefficient a0 in
term B is equal to 1 − α and the coefficient a1θn is equal to α. The coefficient a2 may
not be the same as ψ because in this model there are more uses of time than in the
model without production of non-market consumption. The only term in utility that
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is new to this model is E. The goal of the rest of this section is to show that this term
is constant, such that its inclusion does not affect any other trade-offs in the model.

B.1 Households at non-WFH firms

Consider households that do not have a WFH option. These households choose b,
ln, `, cm, and h to maximize the utility written in (A.4) subject to the following two
constraints

budget: µc [(w − τ) b− cm − rh]

time: µl [1− (1 + t) b− ln − `]

where µc and µl are Lagrange multipliers. The first-order conditions are

cm : a0 = µcc
m

h : a1θn = µcrh

b : µc (w − τ) b = µl (1 + t) b

` : a2 = µl`

ln : a1 (1− θn) = µll
n.

Add the FOCs for b, `, and ln and impose the time constraint to get

µl = µc (w − τ) b+ a2 + a1 (1− θn) .

Add the FOCs for cm and h and impose the budget constraint to get

µc (w − τ) b = a0 + a1θn.

Inserting this second equation into the first gives

µl = a0 + a1 + a2.

This gives us a solution for ` and ln of

` =
a2

a0 + a1 + a2

and ln =
a1 (1− θn)

a0 + a1 + a2

In other words, both leisure and time spent in home production are constant. This
means we can parameterize the model to deliver an allocation of consumption and
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housing that is identical to our baseline model that does not have home production.
This parameterization will have the properties

a0 = (1− α)

a1θn = α
a1 (1− θn) + a2

a0 + a1 + a2

=
ψ

1 + ψ

where 1−α, α, and ψ are the coefficients on market consumption, housing, and leisure
in the model without home production. For example, if we set α = 0.25, ψ = 1, and
θn = 0.33 in the model without home production, then the model with home production
will produce an identical allocation of consumption and housing at any wage w or
rental price r when a0 = 0.75, a1 = 0.758, and a2 = 0.492.

B.2 Households at WFH firms

Now we repeat the above exercise but consider households that work at WFH firms.
These households have budget and time constraints as follows

budget: µc
[
ω
(
lb, lh, kh, sh

)
− τ lb − c− r

(
h+ sh

)
− rkkh

]
time: µl

[
1− (1 + t) lb − lh − ln − `

]
.

As before, µc and µl are the Lagrange multipliers on the constraints.

The first-order conditions are

cm : a0 = µcc
m

h : a1θn = µcrh

lb : µc
[(
∂ω/∂lb

)
− τ
]
lb = µl (1 + t) lb

lh : µc
(
∂ω/∂lh

)
lh = µll

h

kh :
(
∂ω/∂kh

)
kh = rkkh

sh :
(
∂ω/∂sh

)
sh = rsh

` : a2 = µl`

ln : a1 (1− θn) = µll
n.
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Add the first two FOCs and impose the budget constraint to get

µc =
a0 + a1θn

ω (lb, lh, kh, sh)− τ lb − rsh − rkkh
.(A.5)

Add the FOCs for lb and lh to get

µc

[(
∂ω

∂lb

)
lb − τ lb +

(
∂ω

∂lh

)
lh
]

= µl
[
(1 + t) lb + lh

]
.

Insert the FOC for ` and use the time constraint to get

µc

[(
∂ω

∂lb

)
lb − τ lb +

(
∂ω

∂lh

)
lh
]

= µl (1− ln − `)

=
a2

`
− a1 (1− θn) − a2.

The second line in the above is from the FOCs for ` and ln. For convenience define
â = a1 (1− θn) + a2. Add and subtract

(
∂ω/∂sh

)
sh and

(
∂ω/∂kh

)
kh from the left-hand

side and use the FOCs for sh and kh to get

µc

[(
∂ω

∂lb

)
lb +

(
∂ω

∂lh

)
lh +

(
∂ω

∂kh

)
kh +

(
∂ω

∂sh

)
sh − τ lb − rsh − rkkh

]
=

a2

`
− â.

Now use the results from equation (A.5) to get(
∂ω

∂lb

)
lb +

(
∂ω

∂lh

)
lh +

(
∂ω

∂kh

)
kh +

(
∂ω

∂sh

)
sh − τ lb − rsh − rkkh

ω (lb, lh, kh, sh)− τ lb − rsh − rkkh
=

a2/` − â
a0 + a1θn

.(A.6)

As long as the output function is homogeneous of degree 1, such that

ω
(
lb, lh, kh, sh

)
=

(
∂ω

∂lb

)
lb +

(
∂ω

∂lh

)
lh +

(
∂ω

∂kh

)
kh +

(
∂ω

∂sh

)
sh

then equation (A.6) implies leisure is a constant since the left-hand side of that equa-
tion is equal to 1. To solve for leisure, insert the definition of â into equation (A.6) to
get

` =
a2

a0 + a1 + a2

,

and thus leisure is constant. From the FOCs for ` and ln we can derive that time
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spent in home production ln is also a constant and equal to

ln =
a1 (1− θn)

a0 + a1 + a2

.

These are the same results as for households that work for firms that do not allow
WFH. Therefore, we know we can calibrate the model such that it delivers the exact
same allocations as the baseline model without home production for any values of rk

and r and any homeogenous-of-degree-one wage function ω
(
lb, lh, kh, sh

)
.

C Solution: Households at Non-WFH Firms

In this section we derive optimal choices for consumption, housing, leisure, and the
fraction of time spent working at the office for type ι households working for a non-
WFH firm and residing in location n. To keep notation as clean as possible, we will
drop location and type subscripts in the derivation that follows. Denote the Lagrange
multiplier on the budget constraint as µc and the Lagrange multiplier on the time
constraint as µl. In what follows, we have removed the χ term from utility as χ does
not affect any household decision once the location and type of firm have been chosen.
After eliminating location subscripts, we can write the household problem as

max
c,h,`,b

{ (1− α) ln c+ α lnh+ ψ ln ` }

subject to

0 = µc [(w − τ) b− c− rh]

0 = µl [1− (1 + t) b− `] .

The first-order conditions are

c : (1− α) /c = µc

h : α/h = µcr

` : ψ/` = µl

b : µc (w − τ) = µl (1 + t) .

We can rewrite the FOC for h as α = µcrh, substitute into the FOC for c, and use the
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budget constraint to get

1 = µc (w − τ) b.(A.7)

We can substitute µc into the FOC for b using equation (A.7), multiply by b, and then
use the FOC for ` to get

1 = ψ (1 + t) b/`.

Since 1− ` = (1 + t) b, this implies

` = ψ/ (1 + ψ) and (1 + t) b = 1/ (1 + ψ) .

Finally, given b and therefore (w − τ) b, the first two FOCs imply

c = (1− α) (w − τ) b and rh = α (w − τ) b.

D Solution: Households at WFH Firms

D.1 Solving taking wage function as given

In this section we derive optimal choices for consumption, housing, leisure, fraction of
time spent working at the office, fraction of time spent working at home, equipment
and software for the home office, and home office space rented for type 1 and 2 house-
holds residing in location n and working for WFH firms. As before, to reduce clutter
we remove location and type subscripts and the χ term from utility.

Denote the Lagrange multiplier on the budget constraint as µc and the Lagrange
multiplier on the time constraint as µl. Then the household problem can be written
as

max
c,h,`,lb,lh,kh,sh

{ (1− α) ln c+ α lnh+ ψ ln ` }

subject to

0 = µc
[
ω
(
lb, lh, kh, sh

)
− τ lb − c− r

(
h+ sh

)
− rkkh

]
0 = µl

[
1− (1 + t) lb − lh − `

]
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The first-order conditions are

c : (1− α) /c = µc

h : α/h = µcr

` : ψ/` = µl

lb : µc
[(
∂ω/∂lb

)
− τ
]

= µl (1 + t)

lh : µc
(
∂ω/∂lh

)
= µl

kh :
(
∂ω/∂kh

)
= rk

sh :
(
∂ω/∂sh

)
= r.

We can rewrite the FOC for h as α = µcrh, substitute into the FOC for c, and use the
budget constraint to get

1 = µc
[
ω
(
lb, lh, kh, sh

)
− τ lb − rsh − rkkh

]
(A.8)

which implies

c = (1− α)
[
ω
(
lb, lh, kh, sh

)
− τ lb − rsh − rkkh

]
rh = α

[
ω
(
lb, lh, kh, sh

)
− τ lb − rsh − rkkh

]
.

We can combine the FOCs for lb and lh to get(
∂ω/∂lb

)
− τ

1 + t
=

∂ω

∂lh
.

Multiply the FOC for lb by lb, multiply the FOC for lh by lh, and add those two
FOCs together to get

µc

[(
∂ω

∂lb

)
lb − τ lb +

(
∂ω

∂lh

)
lh
]

= µl
[
(1 + t) lb + lh

]
.

Insert the FOC for ` and use the time constraint to get

µc

[(
∂ω

∂lb

)
lb − τ lb +

(
∂ω

∂lh

)
lh
]

= ψ

(
1− `
`

)
.

Add and subtract
(
∂ω/∂kh

)
kh and

(
∂ω/∂sh

)
sh from the left-hand side (using the FOCs

for kh and sh) to get

µc

[(
∂ω

∂lb

)
lb +

(
∂ω

∂lh

)
lh +

(
∂ω

∂kh

)
kh +

(
∂ω

∂sh

)
sh − τ lb − rsh − rkkh

]
= ψ

(
1− `
`

)
.
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Now use the results from equation (A.8):(
∂ω

∂lb

)
lb +

(
∂ω

∂lh

)
lh +

(
∂ω

∂kh

)
kh +

(
∂ω

∂sh

)
sh − τ lb − rsh − rkkh

ω (lb, lh, kh, sh)− τ lb − rsh − rkkh
= ψ

(
1− `
`

)
.

Provided the wage function is homogeneous of degree 1, as in the case of a produc-
tion function with constant returns to scale, Euler’s homogeneous function theorem
implies

ω
(
lb, lh, khsh

)
=

(
∂ω

∂lb

)
lb +

(
∂ω

∂lh

)
lh +

(
∂ω

∂kh

)
kh +

(
∂ω

∂sh

)
sh

such that

` =
ψ

1 + ψ
.

D.2 Full solution

We will write the problem as if the household chooses kb and sb, i.e., as if the household
owns the firm and claims all profits. For households choosing to work at a WFH firm,
we write the revised problem, inclusive of all production functions, as

max
c,h,`,y,yb,yh,lb,lh,sb,sh,kb,kh

{ (1− α) ln c+ α lnh+ ψ ln ` }

subject to

0 = µc
[
y − rkkb − rssb − τ lb − c− r

(
h+ sh

)
− rkkh

]
(A.9)

0 = µl
[
1− (1 + t) lb − lh − `

]
(A.10)

0 = µy

[[(
yb
)ρ

+
(
yh
)ρ]1/ρ − y](A.11)

0 = µb

[
Ab
(
lb
)θb (kb)θk (sb)θs − yb](A.12)

0 = µh

[
Ah
(
lh
)θb (kh)θk (sh)θs − yh] .(A.13)

A.11



The first-order conditions are

1 y : µy = µc

2 yb : µb = y1−ρ
(
yb
)ρ−1

µy

3 yh : µh = y1−ρ
(
yh
)ρ−1

µy

4 lb : µ` (1 + t) + µcτ = µbθb
(
yb/lb

)
5 lh : µ` = µhθb

(
yh/lh

)
6 kb : µcr

k = µbθk
(
yb/kb

)
7 kh : µcr

k = µhθk
(
yh/kh

)
8 sb : µcr

s = µbθs
(
yb/sb

)
9 sh : µcr = µhθs

(
yh/sh

)
10 c : µc = (1− α) /c

11 h : µcr = α/h

12 ` : µ` = ψ/`.

We start by showing leisure is a constant. Note that FOCs 6+8, 7+9, and 10+11
imply the following (after imposing θb + θk + θs = 1)

µc
[
rkkb + rssb

]
= µby

b (1− θb)

µc
[
rkkh + rsh

]
= µhy

h (1− θb)

µc [c+ rh] = 1.

Adding these three equations together and imposing (A.9) implies

µc
(
y − τ lb

)
= 1 + (1− θb)

(
µby

b + µhy
h
)

(A.14)

= 1 + (1− θb)µcy(A.15)

→ θbµcy = 1 + µcτ l
b(A.16)

where the second line of the above comes from FOCs 1, 2, and 3.

Now add the FOCs for lb, lh, and ` (after multiplying each by lb, lh, and `) and use
the time constraint to get

µ` + µcτ l
b = ψ + θb

[
µbyb + µhyh

]
= ψ + θbµcy

→ µ` = 1 + ψ
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where the third line uses (A.16). Finally, insert the result of FOC 12 to get the result
that leisure is constant

` =
ψ

1 + ψ
.

Next, divide FOC 6 by FOC 8 and FOC 7 by FOC 9 and rearrange terms to get

kb

kh
=

rssb

rsh
.

Divide FOC 8 by FOC 9 and use the results of FOCs 2 and 3 to get

yb

yh
=

(
rssb

rsh

) 1
ρ

.

Now work with the office and home production functions to get an expression for sb/sh
as a function of lb/lh. (

yb

yh

)
=

Ab

Ah

(
lb

lh

)θb (kb
kh

)θk ( sb
sh

)θs
(
rssb

rsh

) 1
ρ

=

(
Ab

Ah

)(
lb

lh

)θb (rssb
rsh

)θk ( sb
sh

)θs
(
sb

sh

) 1−ρθk−ρθs
ρ

=

(
rs

r

) ρθk−1

ρ
(
Ab

Ah

)(
lb

lh

)θb
(
sb

sh

)
=

(rs
r

) ρθk−1

ρ
(
Ab

Ah

)(
lb

lh

)θb
ρ

1−ρθk−ρθs

.

Given lb/lh, this determines sb/sh, kb/kh, and yb/yh.

Now we wish to solve for levels given these ratios. We start by substituting for kb

and kh by using FOCs 6, 2 and 1 as well as 7, 3 and 1:

kb = y1−ρ
(
yb
)ρ
θk/r

k(A.17)

kh = y1−ρ
(
yh
)ρ
θk/r

k.
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We now insert these into the production function for yb and yh.

(A.18)

yb = Ab
(
lb
)θb [y1−ρ (yb)ρ θk/rk]θk (sb)θs → yb = Ãb

(
lb
) θb

1−ρθk (y)
(1−ρ)θk
1−ρθk

(
sb
) θs

1−ρθk

yh = Ah
(
lh
)θb [y1−ρ (yh)ρ θk/rk]θk (sh)θs → yh = Ãh

(
lh
) θb

1−ρθk (y)
(1−ρ)θk
1−ρθk

(
sh
) θs

1−ρθk

where we have defined

Ãb =
(
Ab
) 1

1−ρθk
(
θk/r

k
) θk

1−ρθk and Ãh =
(
Ah
) 1

1−ρθk
(
θk/r

k
) θk

1−ρθk .

We can rewrite the production function using equation (A.18) as follows

yρ =
(
yb
)ρ

+
(
yh
)ρ

=
(
Ãb
)ρ (

lb
) ρθb

1−ρθk (y)
(1−ρ)ρθk
1−ρθk

(
sb
) ρθs

1−ρθk +
(
Ãh
)ρ (

lh
) ρθb

1−ρθk (y)
(1−ρ)ρθk
1−ρθk

(
sh
) ρθs

1−ρθk .

Combining terms gives

y
ρ(1−θk)
1−ρθk =

(
Ãb
)ρ (

lb
) ρθb

1−ρθk
(
sb
) ρθs

1−ρθk +
(
Ãh
)ρ (

lh
) ρθb

1−ρθk
(
sh
) ρθs

1−ρθk

and thus

y =

[(
Ãb
)ρ (

lb
) ρθb

1−ρθk
(
sb
) ρθs

1−ρθk +
(
Ãh
)ρ (

lh
) ρθb

1−ρθk
(
sh
) ρθs

1−ρθk

] 1−ρθk
ρ(1−θk)

.(A.19)

To conclude, add FOCs 8 and 9 after multiplying by sb and sh respectively to get

µc
(
rssb + rsh

)
= θs

[
µby

b + µhy
h
]

= µcθsy

which yields the expression

rssb + rsh = θsy(A.20)

→ sh
[
rs
(
sb

sh

)
+ r

]
= θsy.
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Now insert the expression for y from equation (A.19) to get

sh
[
rs
(
sb

sh

)
+ r

]
= θs

[(
Ãb
)ρ (

lb
) ρθb

1−ρθk
(
sb
) ρθs

1−ρθk +
(
Ãh
)ρ (

lh
) ρθb

1−ρθk
(
sh
) ρθs

1−ρθk

] 1−ρθk
ρ(1−θk)

= θs
(
sh
) θs

1−θk

[(
Ãb
)ρ (

lb
) ρθb

1−ρθk

(
sb

sh

) ρθs
1−ρθk

+
(
Ãh
)ρ (

lh
) ρθb

1−ρθk

] 1−ρθk
ρ(1−θk)

which gives

sh =


θs

[(
Ãb
)ρ (

lb
) ρθb

1−ρθk

(
sb

sh

) ρθs
1−ρθk +

(
Ãh
)ρ (

lh
) ρθb

1−ρθk

] 1−ρθk
ρ(1−θk)

rs
(
sb

sh

)
+ r


1−θk

1−θk−θs

.(A.21)

If we know lb/lh, we know (a) sb/sh (from A.17) and (b) lb and lh separately given that
leisure is a constant. Equation (A.21) implies we then know sh. This gives sb and then
y from equation (A.19), which then gives yb and yh from equation (A.18) and therefore
kb and kh from equation (A.17).

Once we know lb/lh, we can analytically solve for the optimal solution to the house-
hold problem. Computation involves searching for the correct value of lb/lh. To verify
we have selected the correct value of lb/lh, we work with FOCs 10 and 11 to derive

µc (c+ rh) = 1.

We can then use FOCs 4 and 5 to derive(
lb

lh

)
=

(
µb
µh

)(
yb

yh

)[
(1 + t) +

τµc
µ`

]−1
=

(
yb

yh

)ρ [
(1 + t) +

τ

(1 + ψ) (c+ rh)

]−1
.
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From earlier, we know(
yb

yh

)ρ
=

(
rs

r

)(
sb

sh

)

=

(
rs

r

)(rs
r

) ρθk−1

ρ
(
Ab

Ah

)(
lb

lh

)θb
ρ

1−ρθk−ρθs

=

(
rs

r

) −ρθs
1−ρθk−ρθs

[(
Ab

Ah

)(
lb

lh

)θb] ρ
1−ρθk−ρθs

.(A.22)

Inserting equation (A.22) gives

(
lb

lh

)
=

(
rs

r

) −ρθs
1−ρθk−ρθs

[(
Ab

Ah

)(
lb

lh

)θb] ρ
1−ρθk−ρθs

[
(1 + t) +

τ

(1 + ψ) (c+ rh)

]−1
→
(
lb

lh

) 1−ρ
1−ρθk−ρθs

=

(
rs

r

) −ρθs
1−ρθk−ρθs

(
Ab

Ah

) ρ
1−ρθk−ρθs

[
(1 + t) +

τ

(1 + ψ) (c+ rh)

]−1
where the second equation uses θb + θk + θs = 1. This implies

(
lb

lh

)
=

(
rs

r

)−ρθs
1−ρ
(
Ab

Ah

) ρ
1−ρ
[
(1 + t) +

τ

(1 + ψ) (c+ rh)

]−(1−ρθk−ρθs)
1−ρ

.

E Estimation Details

E.1 Standard errors of parameters estimated outside the model

We directly calculate the standard errors of the commuting cost parameters, as these
parameters are sample means. For parameters that are transformations of moments
in the data, we calculate standard errors using the delta method.

Importance of idiosyncratic preferences for WFH firms. For 1/ζ, the delta
method requires as an input the variance-covariance matrix for the estimates of the
wage discounts at the 25th and 75th percentiles. Mas and Pallais (2017) report stan-
dard errors for the estimate at the 75th percentile, $0.50, and the 25th percentile,
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$0.68, but not the covariance of these estimates. We expect a nonzero correlation be-
cause, by definition, the 25th percentile will have a greater wage discount than the
75th percentile. We use a simulation procedure that we describe next to assign a cor-
relation of these two estimates of 0.375, which then implies a standard error for the
estimate of 1/ζ equal to 0.0198.

To estimate the correlation, we simulate 100,000 data sets of WTP from the Nor-
mal distribution with mean µsim, standard deviation σsim, and sample size Nsim. In
each data set, we keep the 25th and 75th percentiles of WTP. We set µsim = 1.325,
σsim = 1.668 and Nsim = 16 to match three facts:

1. The average value of the WTP at the 75th percentile is 2.45 (off of a base of
17.50). Our simulated estimate is 2.44.

2. The average value of the WTP at the 25th percentile is 0.20 (off of a base of
17.50). Our simulated estimate is 0.21.

3. The standard deviation of the WTP at each of the 25th and 75th percentiles is
about 0.60. Our simulated estimate is 0.54.

There are two reasons we write “about 0.60” when Mas and Pallais report a stan-
dard error around the estimate of the 25th percentile of 0.50 and a standard error
around the estimate of the 75th percentile of 0.68. First, the simulated standard er-
rors around the 25th and 75th percentiles are approximately equal. This is why we
attempt to hit the midpoint in simulations of about 0.59, although our simulated esti-
mate is a little low at 0.54. Second, to generate such a large standard error, we need a
very small number of directly observable draws: 16 per data set delivers the approxi-
mately correct standard error around each of the 25th and 75th percentiles. This may
seem low, given that the data set in Mas and Pallais (2017) consists of 608 observa-
tions. In the data of Mas and Pallais (2017), respondents are not directly asked their
WTP. Instead, they are randomly assigned a wage gap between non-WFH and WFH
and asked if they would take the WFH job at that wage gap.

For each of the simulated WTP data sets, we compute 1/ζ. The standard deviation
across data sets of 1/ζ is 0.0172 and the 5th and 95th percentile estimates of 1/ζ

are 0.0365 and 0.0928 with a median of 0.0616, not too far from our baseline estimate
that uses the reported data of 0.0634. Across the 100,000 simulated data sets, the
correlation of the estimates of the 25th and 75th percentiles is 0.375.
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E.2 Standard errors of jointly estimated parameters

We calculate the standard errors of our jointly estimated parameters as follows. De-
note m (θ) as an Mx1 vector of moments to match and let θ be a Kx1 vector of param-
eters. Denote θ̂ as the estimator of θ, where θ̂ satisfies

θ̂ = arg min [m (θ)−m (θ∗)]′ [m (θ)−m (θ∗)] .(A.23)

In our application, K = M = 19. The first 10 moments correspond to moments 1-
10 as we describe in Section 4.5. The remaining 9 moments are the average hourly
wage by type (4), financial commuting costs by zone (2), time commuting costs by
zone (2), and the elasticity of choosing to WFH with respect to the wage (1). Our
estimation strategy is to start with the last 9 moments, as for these moments there
is a 1-1 mapping of parameters to moments, and find the values of the 9 parameters
to exactly match the last 9 moments. Then, we search for the remaining parameters
of the model to minimize the objective function in equation (A.23). This objective
function depends on 19 parameters, 9 of which are fixed; we search for the remaining
parameters. The value of the minimized objective function is very nearly zero, which
is expected as the model is exactly identified.25

Now take the Taylor expansion of the moments at θ̂, around the true but unob-
served values of θ, denoted as θ∗:

m
(
θ̂
)
−m (θ∗) =

[
∂m (θ)

∂θ

] [
θ̂ − θ∗

]
(A.24)

where
[
∂m (θ)

∂θ

]
is the MxK matrix produced by taking the derivative of each of the M

moments with respect to each of the K parameters.

Multiply both sides of equation A.24 by
[
∂m (θ)

∂θ

]′
and take the inverse to get

[
θ̂ − θ∗

]
=

[[
∂m (θ)

∂θ

]′ [
∂m (θ)

∂θ

]]−1 [
∂m (θ)

∂θ

]′ [
m
(
θ̂
)
−m (θ∗)

]
.

25The value of the minimized objective function at our reported estimates is 2.12E-11.
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Take the expected value of
[
θ̂ − θ∗

] [
θ̂ − θ∗

]′
and consider the case of K = M to get

Var
(
θ̂ − θ∗

)
= A−1 Ω A−1′

where we have defined the MxM matrices

A =

[
∂m (θ)

∂θ

]
Ω = E

{[
m
(
θ̂
)
−m (θ∗)

] [
m
(
θ̂
)
−m (θ∗)

]′}
.

To determine the matrix A, we change the value of each parameter one at a time by
1%, simulate the model, and record how each of the M moments change. For Ω, since
we are drawing from many different data sets, we place the square of the reported
standard errors on the diagonal elements and assume the off-diagonal elements are
zero.

We estimate the following 10 parameters using the first 10 moments we describe
earlier: Ahι /Abι for ι = 1, 2, a2,ι for ι = 1, . . . , 4, χι for ι = 1, 2, Z, and ρ.26 We estimate the
remaining 9 parameters directly using the last 9 moments: Zι for ι = 1, . . . , 4, tn for
n = 1, 2, τn for n = 1, 2, and ζ−1. Each of the 19 parameters can influence any moment,
so all 19 columns of the first 10 rows of A will be populated. Each of the moments
corresponding to parameters 11-19 is trivial in the sense that the parameter is set to
directly match the estimate of that parameter taken from outside of the model. We
capture this simplicity by setting the diagonal elements of A from rows 11-19 equal
to one and setting the off-diagonals in those rows to 0.

F Pandemic Counterfactuals

In both the COVID-19 and hypothetical 2009 pandemic counterfactuals, we restrict
hours worked at the office for all four types to be equal to 40% of their baseline hours.
Denote baseline hours for type ι households living in zone n that are not at a WFH
firm as b̄nι. For households that are not at a WFH firm, in the COVID counterfactuals

26See Section 4.5 for intuition on identification.
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we set

bnι = 0.4 · b̄nι
`nι = 1− (1 + tn) bnι.

Note that expressions (12) through (15) continue to hold. Given the wage as deter-
mined by these equations, and given bnι, labor income is determined. Given labor
income and leisure, the household optimally chooses consumption and housing to
maximize utility.

For households that are at a WFH firm, the process to determine labor income is
a little more involved. Denote l̄bnι as the baseline pre-pandemic time at the office for
households at a WFH firm. Then for the COVID counterfactuals, we restrict

lbnι = 0.4 · l̄bnι(A.25)

For convenience, we drop the location and type subscripts. To determine the remain-
ing endogenous variables, we assume (as before) that households own the WFH firm
and find quantities that solve

max
c,h,`,y,yb,yh,lh,sb,sh,kb,kh

{ (1− α) ln c+ α lnh+ ψ ln ` }

subject to

0 = µc
[
y − rkkb − rssb − τ lb − c− r

(
h+ sh

)
− rkkh

]
(A.26)

0 = µl
[
1− (1 + t) lb − lh − `

]
(A.27)

0 = µy

[[(
yb
)ρ

+
(
yh
)ρ]1/ρ − y](A.28)

0 = µb

[
Ab
(
lb
)θb (kb)θk (sb)θs − yb](A.29)

0 = µh

[
Ah
(
lh
)θb (kh)θk (sh)θs − yh] .(A.30)
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The first-order conditions are

1a y : µy = µc

2a yb : µb = y1−ρ
(
yb
)ρ−1

µy

3a yh : µh = y1−ρ
(
yh
)ρ−1

µy

5a lh : µ` = µhθb
(
yh/lh

)
6a kb : µcr

k = µbθk
(
yb/kb

)
7a kh : µcr

k = µhθk
(
yh/kh

)
8a sb : µcr

s = µbθs
(
yb/sb

)
9a sh : µcr = µhθs

(
yh/sh

)
10a c : µc = (1− α) /c

11a h : µcr = α/h

12a ` : µ` = ψ/`.

In the numbering of the FOCs, we have skipped “4a” so the numbering of the FOCs
exactly corresponds to the numbering in the unconstrained problem of the previous
section, making comparisons of mathematics in this section and the previous section
straightforward.

To make progress, we derive the solution for all other variables given a guess of a
solution for lh (and thus `) and then confirm that the guess for lh is correct. To do this,
we divide the FOC 6a by FOC 8a and FOC 7a by FOC 9a and rearrange terms to get

kb

kh
=

rssb

rsh
.

Divide FOC 8a by FOC 9a and use the results of FOCs 2a and 3a to get

yb

yh
=

(
rssb

rsh

) 1
ρ

.

Using the mathematics from the previous section, we can derive an expression for
sb/sh as a function of lb/lh(

yb

yh

)
=

Ab

Ah

(
lb

lh

)θb (kb
kh

)θk ( sb
sh

)θs

→
(
sb

sh

)
=

(rs
r

) ρθk−1

ρ
(
Ab

Ah

)(
lb

lh

)θb
ρ

1−ρθk−ρθs

.
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Given lb/lh, we can determine sb/sh, kb/kh and yb/yh.

To pin down levels, note that FOCs 7a and 9a imply

kh =

(
θk
θs

)( r
rk

)
sh

so given a value of sh, we know kh; and given sh and kh, we know sb and kb and thus
yb and yh (given we know the ratios sb/sh, kb/kh and yb/yh). Then, using mathematics
from the previous section, note that FOCs 8a and 9a imply27

rssb + rsh = θsy.

After rearranging terms, this becomes

sh =
θsy

rs (sb/sh) + r

The results of the previous section show that we can derive

sh =


θs

[(
Ãb
)ρ (

lb
) ρθb

1−ρθk

(
sb

sh

) ρθs
1−ρθk +

(
Ãh
)ρ (

lh
) ρθb

1−ρθk

] 1−ρθk
ρ(1−θk)

rs
(
sb

sh

)
+ r


1−θk

1−θk−θs

.

where, as before,

Ãb =
(
Ab
) 1

1−ρθk
(
θk/r

k
) θk

1−ρθk and Ãh =
(
Ah
) 1

1−ρθk
(
θk/r

k
) θk

1−ρθk .

Finally, we have to confirm that we have guessed the correct value of lh. Combine
the FOCs for 5a and 12a to get

ψ

(
lh

`

)
= θbµhyh = θbµcy

1−ρ (yh)ρ =
θby

1−ρ (yh)ρ
c+ rh

where the last equality comes from combining FOCs 10a and 11a. After imposing the
27As before, we have used the implications of FOCs 1a, 2a, and 3a and the definition of y from

equation (A.28) to derive that µhyh + µby
b = µcy.
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budget constraint and rearranging terms, this becomes

lh =
`θb
ψ

(
y1−ρ

(
yh
)ρ

y − rkkb − rssb − τ lb − rsh − rkkh

)
.

Given what we have derived, all of the terms on the right hand side have been deter-
mined given a value of lh. To find the solution, we search for the value of lh such that
the above equation holds.
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